slobers commited on
Commit
efda35d
·
verified ·
1 Parent(s): 8d05c7b

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. README.md +19 -0
  2. pyproject.toml +29 -0
  3. src/main.py +50 -0
  4. src/pipeline.py +55 -0
  5. uv.lock +0 -0
README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flux-schnell-edge-inference
2
+
3
+ This holds the baseline for the FLUX Schnel NVIDIA GeForce RTX 4090 contest, which can be forked freely and optimized
4
+
5
+ Some recommendations are as follows:
6
+ - Installing dependencies should be done in `pyproject.toml`, including git dependencies
7
+ - HuggingFace models should be specified in the `models` array in the `pyproject.toml` file, and will be downloaded before benchmarking
8
+ - The pipeline does **not** have internet access so all dependencies and models must be included in the `pyproject.toml`
9
+ - Compiled models should be hosted on HuggingFace and included in the `models` array in the `pyproject.toml` (rather than compiling during loading). Loading time matters far more than file sizes
10
+ - Avoid changing `src/main.py`, as that includes mostly protocol logic. Most changes should be in `models` and `src/pipeline.py`
11
+ - Ensure the entire repository (excluding dependencies and HuggingFace models) is under 16MB
12
+
13
+ For testing, you need a docker container with pytorch and ubuntu 22.04.
14
+ You can download your listed dependencies with `uv`, installed with:
15
+ ```bash
16
+ pipx ensurepath
17
+ pipx install uv
18
+ ```
19
+ You can then relock with `uv lock`, and then run with `uv run start_inference`
pyproject.toml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools >= 75.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "flux-schnell-edge-inference"
7
+ description = "An edge-maxxing model submission for the 4090 Flux contest"
8
+ requires-python = ">=3.10,<3.13"
9
+ version = "8"
10
+ dependencies = [
11
+ "diffusers==0.31.0",
12
+ "transformers==4.46.2",
13
+ "accelerate==1.1.0",
14
+ "omegaconf==2.3.0",
15
+ "torch==2.5.1",
16
+ "protobuf==5.28.3",
17
+ "sentencepiece==0.2.0",
18
+ "torchao==0.6.1",
19
+ "hf_transfer==0.1.8",
20
+ "edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
21
+ ]
22
+
23
+ [[tool.edge-maxxing.models]]
24
+ repository = "slobers/Flux.1.Schnella"
25
+ revision = "e34d670e44cecbbc90e4962e7aada2ac5ce8b55b"
26
+
27
+
28
+ [project.scripts]
29
+ start_inference = "main:main"
src/main.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import BytesIO
2
+ from multiprocessing.connection import Listener
3
+ from os import chmod, remove
4
+ from os.path import abspath, exists
5
+ from pathlib import Path
6
+
7
+ from PIL.JpegImagePlugin import JpegImageFile
8
+ from pipelines.models import TextToImageRequest
9
+
10
+ from pipeline import load_pipeline, infer
11
+
12
+ SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
13
+
14
+
15
+ def main():
16
+ print(f"Loading pipeline")
17
+ pipeline = load_pipeline()
18
+
19
+ print(f"Pipeline loaded, creating socket at '{SOCKET}'")
20
+
21
+ if exists(SOCKET):
22
+ remove(SOCKET)
23
+
24
+ with Listener(SOCKET) as listener:
25
+ chmod(SOCKET, 0o777)
26
+
27
+ print(f"Awaiting connections")
28
+ with listener.accept() as connection:
29
+ print(f"Connected")
30
+
31
+ while True:
32
+ try:
33
+ request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
34
+ except EOFError:
35
+ print(f"Inference socket exiting")
36
+
37
+ return
38
+
39
+ image = infer(request, pipeline)
40
+
41
+ data = BytesIO()
42
+ image.save(data, format=JpegImageFile.format)
43
+
44
+ packet = data.getvalue()
45
+
46
+ connection.send_bytes(packet)
47
+
48
+
49
+ if __name__ == '__main__':
50
+ main()
src/pipeline.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import os
3
+ from typing import TypeAlias
4
+
5
+ import torch
6
+ from PIL.Image import Image
7
+ from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderTiny, DiffusionPipeline
8
+ from huggingface_hub.constants import HF_HUB_CACHE
9
+ from pipelines.models import TextToImageRequest
10
+ from torch import Generator
11
+ from transformers import T5EncoderModel, CLIPTextModel
12
+
13
+ os.environ["TOKENIZERS_PARALLELISM"] = "True"
14
+ torch._dynamo.config.suppress_errors = True
15
+ os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
16
+
17
+ Pipeline = None
18
+
19
+ ids = "slobers/Flux.1.Schnella"
20
+ Revision = "e34d670e44cecbbc90e4962e7aada2ac5ce8b55b".
21
+
22
+
23
+ def load_pipeline() -> Pipeline:
24
+ text_encoder = CLIPTextModel.from_pretrained(ids, revision=Revision, subfolder="text_encoder", local_files_only=True, torch_dtype=torch.bfloat16)
25
+
26
+ text_encoder_2 = T5EncoderModel.from_pretrained(ids, revision=Revision, subfolder="text_encoder_2", torch_dtype=torch.bfloat16)
27
+
28
+ vae = AutoencoderTiny.from_pretrained(ids, revision=Revision, subfolder="vae", torch_dtype=torch.bfloat16)
29
+
30
+ transformer = FluxTransformer2DModel.from_pretrained(ids, revision=Revision, subfolder="transformer", torch_dtype=torch.bfloat16, use_safetensors=False)
31
+
32
+ transformer = torch.compile(transformer, options={"triton.cudagraphs": True})
33
+ transformer.to(device="cuda", memory_format=torch.channels_last)
34
+
35
+
36
+ pipeline = DiffusionPipeline.from_pretrained(ids, vae=vae, revision=Revision, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16)
37
+ pipeline.to("cuda")
38
+
39
+ for _ in range(2):
40
+ pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=5, max_sequence_length=256)
41
+
42
+ return pipeline
43
+
44
+ def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
45
+ generator = Generator(pipeline.device).manual_seed(request.seed)
46
+
47
+ return pipeline(
48
+ request.prompt,
49
+ generator=generator,
50
+ guidance_scale=0.0,
51
+ num_inference_steps=4,
52
+ max_sequence_length=256,
53
+ height=request.height,
54
+ width=request.width,
55
+ ).images[0]
uv.lock ADDED
The diff for this file is too large to render. See raw diff