Upload folder using huggingface_hub
Browse files- README.md +19 -0
- pyproject.toml +29 -0
- src/main.py +50 -0
- src/pipeline.py +55 -0
- uv.lock +0 -0
README.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flux-schnell-edge-inference
|
2 |
+
|
3 |
+
This holds the baseline for the FLUX Schnel NVIDIA GeForce RTX 4090 contest, which can be forked freely and optimized
|
4 |
+
|
5 |
+
Some recommendations are as follows:
|
6 |
+
- Installing dependencies should be done in `pyproject.toml`, including git dependencies
|
7 |
+
- HuggingFace models should be specified in the `models` array in the `pyproject.toml` file, and will be downloaded before benchmarking
|
8 |
+
- The pipeline does **not** have internet access so all dependencies and models must be included in the `pyproject.toml`
|
9 |
+
- Compiled models should be hosted on HuggingFace and included in the `models` array in the `pyproject.toml` (rather than compiling during loading). Loading time matters far more than file sizes
|
10 |
+
- Avoid changing `src/main.py`, as that includes mostly protocol logic. Most changes should be in `models` and `src/pipeline.py`
|
11 |
+
- Ensure the entire repository (excluding dependencies and HuggingFace models) is under 16MB
|
12 |
+
|
13 |
+
For testing, you need a docker container with pytorch and ubuntu 22.04.
|
14 |
+
You can download your listed dependencies with `uv`, installed with:
|
15 |
+
```bash
|
16 |
+
pipx ensurepath
|
17 |
+
pipx install uv
|
18 |
+
```
|
19 |
+
You can then relock with `uv lock`, and then run with `uv run start_inference`
|
pyproject.toml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 75.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "flux-schnell-edge-inference"
|
7 |
+
description = "An edge-maxxing model submission for the 4090 Flux contest"
|
8 |
+
requires-python = ">=3.10,<3.13"
|
9 |
+
version = "8"
|
10 |
+
dependencies = [
|
11 |
+
"diffusers==0.31.0",
|
12 |
+
"transformers==4.46.2",
|
13 |
+
"accelerate==1.1.0",
|
14 |
+
"omegaconf==2.3.0",
|
15 |
+
"torch==2.5.1",
|
16 |
+
"protobuf==5.28.3",
|
17 |
+
"sentencepiece==0.2.0",
|
18 |
+
"torchao==0.6.1",
|
19 |
+
"hf_transfer==0.1.8",
|
20 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
21 |
+
]
|
22 |
+
|
23 |
+
[[tool.edge-maxxing.models]]
|
24 |
+
repository = "slobers/Flux.1.Schnella"
|
25 |
+
revision = "e34d670e44cecbbc90e4962e7aada2ac5ce8b55b"
|
26 |
+
|
27 |
+
|
28 |
+
[project.scripts]
|
29 |
+
start_inference = "main:main"
|
src/main.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from multiprocessing.connection import Listener
|
3 |
+
from os import chmod, remove
|
4 |
+
from os.path import abspath, exists
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
8 |
+
from pipelines.models import TextToImageRequest
|
9 |
+
|
10 |
+
from pipeline import load_pipeline, infer
|
11 |
+
|
12 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
13 |
+
|
14 |
+
|
15 |
+
def main():
|
16 |
+
print(f"Loading pipeline")
|
17 |
+
pipeline = load_pipeline()
|
18 |
+
|
19 |
+
print(f"Pipeline loaded, creating socket at '{SOCKET}'")
|
20 |
+
|
21 |
+
if exists(SOCKET):
|
22 |
+
remove(SOCKET)
|
23 |
+
|
24 |
+
with Listener(SOCKET) as listener:
|
25 |
+
chmod(SOCKET, 0o777)
|
26 |
+
|
27 |
+
print(f"Awaiting connections")
|
28 |
+
with listener.accept() as connection:
|
29 |
+
print(f"Connected")
|
30 |
+
|
31 |
+
while True:
|
32 |
+
try:
|
33 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
34 |
+
except EOFError:
|
35 |
+
print(f"Inference socket exiting")
|
36 |
+
|
37 |
+
return
|
38 |
+
|
39 |
+
image = infer(request, pipeline)
|
40 |
+
|
41 |
+
data = BytesIO()
|
42 |
+
image.save(data, format=JpegImageFile.format)
|
43 |
+
|
44 |
+
packet = data.getvalue()
|
45 |
+
|
46 |
+
connection.send_bytes(packet)
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
main()
|
src/pipeline.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import os
|
3 |
+
from typing import TypeAlias
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from PIL.Image import Image
|
7 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderTiny, DiffusionPipeline
|
8 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
+
from pipelines.models import TextToImageRequest
|
10 |
+
from torch import Generator
|
11 |
+
from transformers import T5EncoderModel, CLIPTextModel
|
12 |
+
|
13 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
14 |
+
torch._dynamo.config.suppress_errors = True
|
15 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
16 |
+
|
17 |
+
Pipeline = None
|
18 |
+
|
19 |
+
ids = "slobers/Flux.1.Schnella"
|
20 |
+
Revision = "e34d670e44cecbbc90e4962e7aada2ac5ce8b55b".
|
21 |
+
|
22 |
+
|
23 |
+
def load_pipeline() -> Pipeline:
|
24 |
+
text_encoder = CLIPTextModel.from_pretrained(ids, revision=Revision, subfolder="text_encoder", local_files_only=True, torch_dtype=torch.bfloat16)
|
25 |
+
|
26 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(ids, revision=Revision, subfolder="text_encoder_2", torch_dtype=torch.bfloat16)
|
27 |
+
|
28 |
+
vae = AutoencoderTiny.from_pretrained(ids, revision=Revision, subfolder="vae", torch_dtype=torch.bfloat16)
|
29 |
+
|
30 |
+
transformer = FluxTransformer2DModel.from_pretrained(ids, revision=Revision, subfolder="transformer", torch_dtype=torch.bfloat16, use_safetensors=False)
|
31 |
+
|
32 |
+
transformer = torch.compile(transformer, options={"triton.cudagraphs": True})
|
33 |
+
transformer.to(device="cuda", memory_format=torch.channels_last)
|
34 |
+
|
35 |
+
|
36 |
+
pipeline = DiffusionPipeline.from_pretrained(ids, vae=vae, revision=Revision, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16)
|
37 |
+
pipeline.to("cuda")
|
38 |
+
|
39 |
+
for _ in range(2):
|
40 |
+
pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=5, max_sequence_length=256)
|
41 |
+
|
42 |
+
return pipeline
|
43 |
+
|
44 |
+
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
45 |
+
generator = Generator(pipeline.device).manual_seed(request.seed)
|
46 |
+
|
47 |
+
return pipeline(
|
48 |
+
request.prompt,
|
49 |
+
generator=generator,
|
50 |
+
guidance_scale=0.0,
|
51 |
+
num_inference_steps=4,
|
52 |
+
max_sequence_length=256,
|
53 |
+
height=request.height,
|
54 |
+
width=request.width,
|
55 |
+
).images[0]
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|