Push LunarLander-v2 model
Browse files- README.md +37 -0
- aakash-ppo-lander-v2.zip +3 -0
- aakash-ppo-lander-v2/_stable_baselines3_version +1 -0
- aakash-ppo-lander-v2/data +94 -0
- aakash-ppo-lander-v2/policy.optimizer.pth +3 -0
- aakash-ppo-lander-v2/policy.pth +3 -0
- aakash-ppo-lander-v2/pytorch_variables.pth +3 -0
- aakash-ppo-lander-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -238.48 +/- 82.63
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
aakash-ppo-lander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89f7daeff4f312d6d6d379aa148a92779a4b53296f938c93b6b2c40c237e0d4d
|
3 |
+
size 147065
|
aakash-ppo-lander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
aakash-ppo-lander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9a8fd9670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9a8fd9700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9a8fd9790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9a8fd9820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe9a8fd98b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe9a8fd9940>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9a8fd99d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe9a8fd9a60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9a8fd9af0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9a8fd9b80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9a8fd9c10>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe9a8fd7240>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 16384,
|
46 |
+
"_total_timesteps": 1000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670479918530289069,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2AtTvM574/5saRPQ4uhb6JLiu+4z57vgAAAAAAAAAAzTW4PR+duT8GIi4/CqqcPLga6b0/twa+AAAAAAAAAAAa44Y+eXKpP6rxSj/iAue+00QAv0hser4AAAAAAAAAAGbUQj2c3KM/jW1uPucC6L4y14y+rfWMvgAAAAAAAAAAc/lKvkDJnT/ruwG/MBsNv8BU0z7+GAg+AAAAAAAAAACj7WG+WAK0P/Lzw74Oxge/zw4+vh5zBr4AAAAAAAAAAGZHiT1/p7g/8uLsPlOhBT0OpzC9+miMvQAAAAAAAAAAM4sXO9M0sz9O1m8+AF33vjkqL7twTlm9AAAAAAAAAADQVGK/0IdUP7Jzi79zRIS/Q+awPrKEMr4AAAAAAAAAAODSaz53SJU/HnQ0Pxr+FL/hbJW9cIqCPQAAAAAAAAAA2rOTveBZoD8bNIm+RBMKv2p6BT663iQ+AAAAAAAAAABAur69N9RYP1VKvb53R2W/BmfnPjppiT4AAAAAAAAAAPPbBz7cPb0+HhmXPitRrr+9GNy93tWrvQAAAAAAAAAAmgm6PBFXsD/NRRA/LdnDvlHf3LwO3+i9AAAAAAAAAACa6L++tyUEPzk2wr7gMZG/tICUvlJCjr4AAAAAAAAAAF2Ruj5XMFk/oJdeP2LrWb+VoiS/avFLvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -15.384,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFvw2xHhwVsCUhpRSlIwBbJRLZYwBdJRHQGMfrOqvNeN1fZQoaAZoCWgPQwi5F5gVimRFwJSGlFKUaBVLS2gWR0BjH/LkjopydX2UKGgGaAloD0MI+kZ0z7ovXMCUhpRSlGgVS29oFkdAYx/RHf/FSHV9lChoBmgJaA9DCNKowMm2DWzAlIaUUpRoFUtEaBZHQGMgJJPIn0F1fZQoaAZoCWgPQwiSQe4iTFxXwJSGlFKUaBVLOmgWR0BjIE5MlC1JdX2UKGgGaAloD0MIVRhbCHJ4e8CUhpRSlGgVS4ZoFkdAYyBPVNHpbHV9lChoBmgJaA9DCHpwd9auLn/AlIaUUpRoFUtZaBZHQGMiGsV+I/J1fZQoaAZoCWgPQwixprIo7NNdwJSGlFKUaBVLWGgWR0BjI3CqIacadX2UKGgGaAloD0MIhZSfVHuwYMCUhpRSlGgVS0RoFkdAYyOmReTmn3V9lChoBmgJaA9DCCibcoU3Q3LAlIaUUpRoFUtFaBZHQGMj4rBj4Hp1fZQoaAZoCWgPQwjZPuQtV05owJSGlFKUaBVLWGgWR0BjJTM7lq8EdX2UKGgGaAloD0MIrDjVWpgKYMCUhpRSlGgVS19oFkdAYyYEA5q/NHV9lChoBmgJaA9DCN47akyI5mDAlIaUUpRoFUtfaBZHQGMncYAKfFt1fZQoaAZoCWgPQwgPKJtyhUZnwJSGlFKUaBVLTWgWR0BjKCFh5PdmdX2UKGgGaAloD0MIKh4X1SKKJsCUhpRSlGgVS3hoFkdAYyf8k2P1c3V9lChoBmgJaA9DCFyTbkvkCVnAlIaUUpRoFUtfaBZHQGModmYjSoh1fZQoaAZoCWgPQwjqPCr+7+JYwJSGlFKUaBVLSGgWR0BjKMGzKLbYdX2UKGgGaAloD0MILJ0PzxKUUcCUhpRSlGgVS05oFkdAYylPEbYK6XV9lChoBmgJaA9DCDv9oC5SeWPAlIaUUpRoFUtbaBZHQGMqk3juKGd1fZQoaAZoCWgPQwggfCjRkgtjwJSGlFKUaBVLaGgWR0BjK8fkmx+sdX2UKGgGaAloD0MI+dwJ9l+DW8CUhpRSlGgVS0loFkdAYyxPZ7HAAXV9lChoBmgJaA9DCJkoQur2bHjAlIaUUpRoFUtraBZHQGMst3wCr951fZQoaAZoCWgPQwi9VGzMa41mwJSGlFKUaBVLdWgWR0BjLaHKwIMSdX2UKGgGaAloD0MIE36pnzdVTsCUhpRSlGgVS0JoFkdAYy9UxVQyh3V9lChoBmgJaA9DCODaiZKQ2G7AlIaUUpRoFUtvaBZHQGMvXK8tf5V1fZQoaAZoCWgPQwj2mh4UlNVVwJSGlFKUaBVLcWgWR0BjMRGc4HX3dX2UKGgGaAloD0MIwTbiyW52aMCUhpRSlGgVS3NoFkdAYzHPKuB+WnV9lChoBmgJaA9DCGv0aoBSnGrAlIaUUpRoFUtQaBZHQGMxv7el9Bt1fZQoaAZoCWgPQwjh0Fs8fJh2wJSGlFKUaBVLYWgWR0BjMd2A5JbudX2UKGgGaAloD0MIFtukorHPWMCUhpRSlGgVS1BoFkdAYzIaisXBQHV9lChoBmgJaA9DCN0/FqLDxG7AlIaUUpRoFUtvaBZHQGMyrThHbyp1fZQoaAZoCWgPQwidvTPaquZPwJSGlFKUaBVLRGgWR0BjNBLCemNzdX2UKGgGaAloD0MIaCRCI1gCa8CUhpRSlGgVS29oFkdAYzUs+3YthHV9lChoBmgJaA9DCO5brROXDVfAlIaUUpRoFUtOaBZHQGM2RUFSsKd1fZQoaAZoCWgPQwjwiuB/axpywJSGlFKUaBVLamgWR0BjN2nhsImgdX2UKGgGaAloD0MIEcR5OAFWcMCUhpRSlGgVS3ZoFkdAYzd+Zw4sE3V9lChoBmgJaA9DCDkOvFruZW/AlIaUUpRoFUtDaBZHQGM3iZF5Oah1fZQoaAZoCWgPQwi6FcJqLP1xwJSGlFKUaBVLXmgWR0BjN9uNxVABdX2UKGgGaAloD0MIOQoQBbMadcCUhpRSlGgVS4FoFkdAYzg+GGmDUXV9lChoBmgJaA9DCNuLaDumylrAlIaUUpRoFUs/aBZHQGM4sH0K7Zp1fZQoaAZoCWgPQwhKJxJMNeVMwJSGlFKUaBVLQGgWR0BjOVHe7+UAdX2UKGgGaAloD0MIf0+sU+V8XMCUhpRSlGgVSz1oFkdAYznj4Hoou3V9lChoBmgJaA9DCGIRww5jTk/AlIaUUpRoFUteaBZHQGM6l/hESdx1fZQoaAZoCWgPQwh1HaopyZFewJSGlFKUaBVLVWgWR0BjO8fDDTBqdX2UKGgGaAloD0MIAB+8dmkiZ8CUhpRSlGgVS3toFkdAYzwuLaVUuXV9lChoBmgJaA9DCGmLa3wmjlDAlIaUUpRoFUtAaBZHQGM8qqn3ta91fZQoaAZoCWgPQwi7D0BqEy5fwJSGlFKUaBVLO2gWR0BjPRuMuOCHdX2UKGgGaAloD0MI6GfqdYtnasCUhpRSlGgVS2NoFkdAYz1jEvTPSnV9lChoBmgJaA9DCMe7I2O14U/AlIaUUpRoFUtFaBZHQGM/TAeq7yx1fZQoaAZoCWgPQwiimSfXFDFiwJSGlFKUaBVLYmgWR0BjP3Tb349HdX2UKGgGaAloD0MISmHe48x/Y8CUhpRSlGgVS1FoFkdAY0ClDWsijnV9lChoBmgJaA9DCArzHmeaHGTAlIaUUpRoFUuHaBZHQGNBundfsu51fZQoaAZoCWgPQwg57pQO1plswJSGlFKUaBVLWWgWR0BjQbNMXaakdX2UKGgGaAloD0MIbqMBvAUSWcCUhpRSlGgVS1poFkdAY0Ihew9q13V9lChoBmgJaA9DCHDqA8k7LyNAlIaUUpRoFUtTaBZHQGNC06gdwNt1fZQoaAZoCWgPQwjmeAWiJzBYwJSGlFKUaBVLXmgWR0BjQvo5ggHNdX2UKGgGaAloD0MIlpNQ+sJjYMCUhpRSlGgVS0hoFkdAY0SWZZ0Sy3V9lChoBmgJaA9DCCqpE9BEslLAlIaUUpRoFUtHaBZHQGNFhNEgGKR1fZQoaAZoCWgPQwhf04OCUnBiwJSGlFKUaBVLXWgWR0BjRYIdELH/dX2UKGgGaAloD0MItMnhk84oasCUhpRSlGgVS3doFkdAY0aIsyzolnV9lChoBmgJaA9DCKcExCRce1/AlIaUUpRoFUtdaBZHQGNGwFLWZqp1fZQoaAZoCWgPQwhMxca8jiRawJSGlFKUaBVLQGgWR0BjRzBfrrxBdX2UKGgGaAloD0MI/fm2YKnlV8CUhpRSlGgVS01oFkdAY0iG5c1O03V9lChoBmgJaA9DCIro19ZPsVTAlIaUUpRoFUs5aBZHQGNIkgfU4Jh1fZQoaAZoCWgPQwhrf2d79ONWwJSGlFKUaBVLb2gWR0BjScgW8AaOdX2UKGgGaAloD0MI+5Y5XRazXMCUhpRSlGgVSzpoFkdAY0n+RYA80XV9lChoBmgJaA9DCCNm9nmMe3jAlIaUUpRoFUtvaBZHQGNKh8IAwPB1fZQoaAZoCWgPQwheDrvvGPBawJSGlFKUaBVLQ2gWR0BjSudmQKa5dX2UKGgGaAloD0MIc6JdhdRZecCUhpRSlGgVS1VoFkdAY0rgZ0jkdXV9lChoBmgJaA9DCDZYOEnzq3TAlIaUUpRoFUuTaBZHQGNLKFh5Pdl1fZQoaAZoCWgPQwho5zQLtNlZwJSGlFKUaBVLQmgWR0BjTRFkQPI5dX2UKGgGaAloD0MIINCZtKnaVMCUhpRSlGgVS2JoFkdAY01F4s3AEnV9lChoBmgJaA9DCOiE0EGX9V/AlIaUUpRoFUtJaBZHQGNNIr4Fia11fZQoaAZoCWgPQwiZDwh0JsVawJSGlFKUaBVLPmgWR0BjT/6O5rgwdX2UKGgGaAloD0MIYHKjyFpJWsCUhpRSlGgVS1FoFkdAY1DcbiqABnV9lChoBmgJaA9DCHL8UGnEdV/AlIaUUpRoFUtKaBZHQGNRcbBGhEl1fZQoaAZoCWgPQwiYhXZOs7xewJSGlFKUaBVLYGgWR0BjUhAD7qIKdX2UKGgGaAloD0MIeTvCacGkVMCUhpRSlGgVSzxoFkdAY1JqcEvCdnV9lChoBmgJaA9DCDBntiv0X1HAlIaUUpRoFUs+aBZHQGNSearmyPd1fZQoaAZoCWgPQwjrbwnAP607QJSGlFKUaBVLimgWR0BjUtENOM2ndX2UKGgGaAloD0MIMA4uHXNUa8CUhpRSlGgVS0poFkdAY1N6ol2NenV9lChoBmgJaA9DCHx+GCE8KFDAlIaUUpRoFUtpaBZHQGNTYao/A0t1fZQoaAZoCWgPQwim8naE04BSwJSGlFKUaBVLSmgWR0BjU8+NcW0rdX2UKGgGaAloD0MIud42U6G/acCUhpRSlGgVS39oFkdAY1Sn5SFXaXV9lChoBmgJaA9DCLVU3o5w7FnAlIaUUpRoFUtbaBZHQGNU3J5mh/R1fZQoaAZoCWgPQwiVfVcE/zZgwJSGlFKUaBVLSmgWR0BjVgYWLxZudX2UKGgGaAloD0MI3e16aYr6dcCUhpRSlGgVS2BoFkdAY1jSrHU+cHV9lChoBmgJaA9DCIj3HFiOAWnAlIaUUpRoFUtNaBZHQGNZD8cdYGN1fZQoaAZoCWgPQwgN/+kGCglTwJSGlFKUaBVLPmgWR0BjWfkgfU4JdX2UKGgGaAloD0MIm6285H/KO8CUhpRSlGgVS4poFkdAY1ovvBrN4nV9lChoBmgJaA9DCGHj+nd9EVPAlIaUUpRoFUtEaBZHQGNbRtP557h1fZQoaAZoCWgPQwjwNJnxthVZwJSGlFKUaBVLUmgWR0BjW60ngHeKdX2UKGgGaAloD0MItyVywZmZYMCUhpRSlGgVS0ZoFkdAY1unUlRgqnV9lChoBmgJaA9DCDXQfM5dbmHAlIaUUpRoFUt7aBZHQGNb9oWYWtV1fZQoaAZoCWgPQwhYHM78ar5PwJSGlFKUaBVLVGgWR0BjXEv4/NaAdX2UKGgGaAloD0MIoZ+p162UaMCUhpRSlGgVS15oFkdAY1yKk2xY73V9lChoBmgJaA9DCFFPH4F/AXvAlIaUUpRoFUtYaBZHQGNeBXCCSRt1fZQoaAZoCWgPQwhznxwFiI51wJSGlFKUaBVLZ2gWR0BjXmj/MnqndX2UKGgGaAloD0MIGQCquHHva8CUhpRSlGgVS3poFkdAY18Xa8Hv+nV9lChoBmgJaA9DCDP7PEZ5ZGLAlIaUUpRoFUteaBZHQGNfiWmgrYp1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 4,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
aakash-ppo-lander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:608e0f033224cdb6a6f7715ae6a2092eab3e883bdaa96d846ddedf3231e6e5e3
|
3 |
+
size 87929
|
aakash-ppo-lander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a06085a352864b6ba1e43d0a0340f96757ca1f50e2d5d08bc48543dc22f4eb4
|
3 |
+
size 43201
|
aakash-ppo-lander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
aakash-ppo-lander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9a8fd9670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9a8fd9700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9a8fd9790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9a8fd9820>", "_build": "<function ActorCriticPolicy._build at 0x7fe9a8fd98b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe9a8fd9940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9a8fd99d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe9a8fd9a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9a8fd9af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9a8fd9b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9a8fd9c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe9a8fd7240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670479918530289069, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2AtTvM574/5saRPQ4uhb6JLiu+4z57vgAAAAAAAAAAzTW4PR+duT8GIi4/CqqcPLga6b0/twa+AAAAAAAAAAAa44Y+eXKpP6rxSj/iAue+00QAv0hser4AAAAAAAAAAGbUQj2c3KM/jW1uPucC6L4y14y+rfWMvgAAAAAAAAAAc/lKvkDJnT/ruwG/MBsNv8BU0z7+GAg+AAAAAAAAAACj7WG+WAK0P/Lzw74Oxge/zw4+vh5zBr4AAAAAAAAAAGZHiT1/p7g/8uLsPlOhBT0OpzC9+miMvQAAAAAAAAAAM4sXO9M0sz9O1m8+AF33vjkqL7twTlm9AAAAAAAAAADQVGK/0IdUP7Jzi79zRIS/Q+awPrKEMr4AAAAAAAAAAODSaz53SJU/HnQ0Pxr+FL/hbJW9cIqCPQAAAAAAAAAA2rOTveBZoD8bNIm+RBMKv2p6BT663iQ+AAAAAAAAAABAur69N9RYP1VKvb53R2W/BmfnPjppiT4AAAAAAAAAAPPbBz7cPb0+HhmXPitRrr+9GNy93tWrvQAAAAAAAAAAmgm6PBFXsD/NRRA/LdnDvlHf3LwO3+i9AAAAAAAAAACa6L++tyUEPzk2wr7gMZG/tICUvlJCjr4AAAAAAAAAAF2Ruj5XMFk/oJdeP2LrWb+VoiS/avFLvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFvw2xHhwVsCUhpRSlIwBbJRLZYwBdJRHQGMfrOqvNeN1fZQoaAZoCWgPQwi5F5gVimRFwJSGlFKUaBVLS2gWR0BjH/LkjopydX2UKGgGaAloD0MI+kZ0z7ovXMCUhpRSlGgVS29oFkdAYx/RHf/FSHV9lChoBmgJaA9DCNKowMm2DWzAlIaUUpRoFUtEaBZHQGMgJJPIn0F1fZQoaAZoCWgPQwiSQe4iTFxXwJSGlFKUaBVLOmgWR0BjIE5MlC1JdX2UKGgGaAloD0MIVRhbCHJ4e8CUhpRSlGgVS4ZoFkdAYyBPVNHpbHV9lChoBmgJaA9DCHpwd9auLn/AlIaUUpRoFUtZaBZHQGMiGsV+I/J1fZQoaAZoCWgPQwixprIo7NNdwJSGlFKUaBVLWGgWR0BjI3CqIacadX2UKGgGaAloD0MIhZSfVHuwYMCUhpRSlGgVS0RoFkdAYyOmReTmn3V9lChoBmgJaA9DCCibcoU3Q3LAlIaUUpRoFUtFaBZHQGMj4rBj4Hp1fZQoaAZoCWgPQwjZPuQtV05owJSGlFKUaBVLWGgWR0BjJTM7lq8EdX2UKGgGaAloD0MIrDjVWpgKYMCUhpRSlGgVS19oFkdAYyYEA5q/NHV9lChoBmgJaA9DCN47akyI5mDAlIaUUpRoFUtfaBZHQGMncYAKfFt1fZQoaAZoCWgPQwgPKJtyhUZnwJSGlFKUaBVLTWgWR0BjKCFh5PdmdX2UKGgGaAloD0MIKh4X1SKKJsCUhpRSlGgVS3hoFkdAYyf8k2P1c3V9lChoBmgJaA9DCFyTbkvkCVnAlIaUUpRoFUtfaBZHQGModmYjSoh1fZQoaAZoCWgPQwjqPCr+7+JYwJSGlFKUaBVLSGgWR0BjKMGzKLbYdX2UKGgGaAloD0MILJ0PzxKUUcCUhpRSlGgVS05oFkdAYylPEbYK6XV9lChoBmgJaA9DCDv9oC5SeWPAlIaUUpRoFUtbaBZHQGMqk3juKGd1fZQoaAZoCWgPQwggfCjRkgtjwJSGlFKUaBVLaGgWR0BjK8fkmx+sdX2UKGgGaAloD0MI+dwJ9l+DW8CUhpRSlGgVS0loFkdAYyxPZ7HAAXV9lChoBmgJaA9DCJkoQur2bHjAlIaUUpRoFUtraBZHQGMst3wCr951fZQoaAZoCWgPQwi9VGzMa41mwJSGlFKUaBVLdWgWR0BjLaHKwIMSdX2UKGgGaAloD0MIE36pnzdVTsCUhpRSlGgVS0JoFkdAYy9UxVQyh3V9lChoBmgJaA9DCODaiZKQ2G7AlIaUUpRoFUtvaBZHQGMvXK8tf5V1fZQoaAZoCWgPQwj2mh4UlNVVwJSGlFKUaBVLcWgWR0BjMRGc4HX3dX2UKGgGaAloD0MIwTbiyW52aMCUhpRSlGgVS3NoFkdAYzHPKuB+WnV9lChoBmgJaA9DCGv0aoBSnGrAlIaUUpRoFUtQaBZHQGMxv7el9Bt1fZQoaAZoCWgPQwjh0Fs8fJh2wJSGlFKUaBVLYWgWR0BjMd2A5JbudX2UKGgGaAloD0MIFtukorHPWMCUhpRSlGgVS1BoFkdAYzIaisXBQHV9lChoBmgJaA9DCN0/FqLDxG7AlIaUUpRoFUtvaBZHQGMyrThHbyp1fZQoaAZoCWgPQwidvTPaquZPwJSGlFKUaBVLRGgWR0BjNBLCemNzdX2UKGgGaAloD0MIaCRCI1gCa8CUhpRSlGgVS29oFkdAYzUs+3YthHV9lChoBmgJaA9DCO5brROXDVfAlIaUUpRoFUtOaBZHQGM2RUFSsKd1fZQoaAZoCWgPQwjwiuB/axpywJSGlFKUaBVLamgWR0BjN2nhsImgdX2UKGgGaAloD0MIEcR5OAFWcMCUhpRSlGgVS3ZoFkdAYzd+Zw4sE3V9lChoBmgJaA9DCDkOvFruZW/AlIaUUpRoFUtDaBZHQGM3iZF5Oah1fZQoaAZoCWgPQwi6FcJqLP1xwJSGlFKUaBVLXmgWR0BjN9uNxVABdX2UKGgGaAloD0MIOQoQBbMadcCUhpRSlGgVS4FoFkdAYzg+GGmDUXV9lChoBmgJaA9DCNuLaDumylrAlIaUUpRoFUs/aBZHQGM4sH0K7Zp1fZQoaAZoCWgPQwhKJxJMNeVMwJSGlFKUaBVLQGgWR0BjOVHe7+UAdX2UKGgGaAloD0MIf0+sU+V8XMCUhpRSlGgVSz1oFkdAYznj4Hoou3V9lChoBmgJaA9DCGIRww5jTk/AlIaUUpRoFUteaBZHQGM6l/hESdx1fZQoaAZoCWgPQwh1HaopyZFewJSGlFKUaBVLVWgWR0BjO8fDDTBqdX2UKGgGaAloD0MIAB+8dmkiZ8CUhpRSlGgVS3toFkdAYzwuLaVUuXV9lChoBmgJaA9DCGmLa3wmjlDAlIaUUpRoFUtAaBZHQGM8qqn3ta91fZQoaAZoCWgPQwi7D0BqEy5fwJSGlFKUaBVLO2gWR0BjPRuMuOCHdX2UKGgGaAloD0MI6GfqdYtnasCUhpRSlGgVS2NoFkdAYz1jEvTPSnV9lChoBmgJaA9DCMe7I2O14U/AlIaUUpRoFUtFaBZHQGM/TAeq7yx1fZQoaAZoCWgPQwiimSfXFDFiwJSGlFKUaBVLYmgWR0BjP3Tb349HdX2UKGgGaAloD0MISmHe48x/Y8CUhpRSlGgVS1FoFkdAY0ClDWsijnV9lChoBmgJaA9DCArzHmeaHGTAlIaUUpRoFUuHaBZHQGNBundfsu51fZQoaAZoCWgPQwg57pQO1plswJSGlFKUaBVLWWgWR0BjQbNMXaakdX2UKGgGaAloD0MIbqMBvAUSWcCUhpRSlGgVS1poFkdAY0Ihew9q13V9lChoBmgJaA9DCHDqA8k7LyNAlIaUUpRoFUtTaBZHQGNC06gdwNt1fZQoaAZoCWgPQwjmeAWiJzBYwJSGlFKUaBVLXmgWR0BjQvo5ggHNdX2UKGgGaAloD0MIlpNQ+sJjYMCUhpRSlGgVS0hoFkdAY0SWZZ0Sy3V9lChoBmgJaA9DCCqpE9BEslLAlIaUUpRoFUtHaBZHQGNFhNEgGKR1fZQoaAZoCWgPQwhf04OCUnBiwJSGlFKUaBVLXWgWR0BjRYIdELH/dX2UKGgGaAloD0MItMnhk84oasCUhpRSlGgVS3doFkdAY0aIsyzolnV9lChoBmgJaA9DCKcExCRce1/AlIaUUpRoFUtdaBZHQGNGwFLWZqp1fZQoaAZoCWgPQwhMxca8jiRawJSGlFKUaBVLQGgWR0BjRzBfrrxBdX2UKGgGaAloD0MI/fm2YKnlV8CUhpRSlGgVS01oFkdAY0iG5c1O03V9lChoBmgJaA9DCIro19ZPsVTAlIaUUpRoFUs5aBZHQGNIkgfU4Jh1fZQoaAZoCWgPQwhrf2d79ONWwJSGlFKUaBVLb2gWR0BjScgW8AaOdX2UKGgGaAloD0MI+5Y5XRazXMCUhpRSlGgVSzpoFkdAY0n+RYA80XV9lChoBmgJaA9DCCNm9nmMe3jAlIaUUpRoFUtvaBZHQGNKh8IAwPB1fZQoaAZoCWgPQwheDrvvGPBawJSGlFKUaBVLQ2gWR0BjSudmQKa5dX2UKGgGaAloD0MIc6JdhdRZecCUhpRSlGgVS1VoFkdAY0rgZ0jkdXV9lChoBmgJaA9DCDZYOEnzq3TAlIaUUpRoFUuTaBZHQGNLKFh5Pdl1fZQoaAZoCWgPQwho5zQLtNlZwJSGlFKUaBVLQmgWR0BjTRFkQPI5dX2UKGgGaAloD0MIINCZtKnaVMCUhpRSlGgVS2JoFkdAY01F4s3AEnV9lChoBmgJaA9DCOiE0EGX9V/AlIaUUpRoFUtJaBZHQGNNIr4Fia11fZQoaAZoCWgPQwiZDwh0JsVawJSGlFKUaBVLPmgWR0BjT/6O5rgwdX2UKGgGaAloD0MIYHKjyFpJWsCUhpRSlGgVS1FoFkdAY1DcbiqABnV9lChoBmgJaA9DCHL8UGnEdV/AlIaUUpRoFUtKaBZHQGNRcbBGhEl1fZQoaAZoCWgPQwiYhXZOs7xewJSGlFKUaBVLYGgWR0BjUhAD7qIKdX2UKGgGaAloD0MIeTvCacGkVMCUhpRSlGgVSzxoFkdAY1JqcEvCdnV9lChoBmgJaA9DCDBntiv0X1HAlIaUUpRoFUs+aBZHQGNSearmyPd1fZQoaAZoCWgPQwjrbwnAP607QJSGlFKUaBVLimgWR0BjUtENOM2ndX2UKGgGaAloD0MIMA4uHXNUa8CUhpRSlGgVS0poFkdAY1N6ol2NenV9lChoBmgJaA9DCHx+GCE8KFDAlIaUUpRoFUtpaBZHQGNTYao/A0t1fZQoaAZoCWgPQwim8naE04BSwJSGlFKUaBVLSmgWR0BjU8+NcW0rdX2UKGgGaAloD0MIud42U6G/acCUhpRSlGgVS39oFkdAY1Sn5SFXaXV9lChoBmgJaA9DCLVU3o5w7FnAlIaUUpRoFUtbaBZHQGNU3J5mh/R1fZQoaAZoCWgPQwiVfVcE/zZgwJSGlFKUaBVLSmgWR0BjVgYWLxZudX2UKGgGaAloD0MI3e16aYr6dcCUhpRSlGgVS2BoFkdAY1jSrHU+cHV9lChoBmgJaA9DCIj3HFiOAWnAlIaUUpRoFUtNaBZHQGNZD8cdYGN1fZQoaAZoCWgPQwgN/+kGCglTwJSGlFKUaBVLPmgWR0BjWfkgfU4JdX2UKGgGaAloD0MIm6285H/KO8CUhpRSlGgVS4poFkdAY1ovvBrN4nV9lChoBmgJaA9DCGHj+nd9EVPAlIaUUpRoFUtEaBZHQGNbRtP557h1fZQoaAZoCWgPQwjwNJnxthVZwJSGlFKUaBVLUmgWR0BjW60ngHeKdX2UKGgGaAloD0MItyVywZmZYMCUhpRSlGgVS0ZoFkdAY1unUlRgqnV9lChoBmgJaA9DCDXQfM5dbmHAlIaUUpRoFUt7aBZHQGNb9oWYWtV1fZQoaAZoCWgPQwhYHM78ar5PwJSGlFKUaBVLVGgWR0BjXEv4/NaAdX2UKGgGaAloD0MIoZ+p162UaMCUhpRSlGgVS15oFkdAY1yKk2xY73V9lChoBmgJaA9DCFFPH4F/AXvAlIaUUpRoFUtYaBZHQGNeBXCCSRt1fZQoaAZoCWgPQwhznxwFiI51wJSGlFKUaBVLZ2gWR0BjXmj/MnqndX2UKGgGaAloD0MIGQCquHHva8CUhpRSlGgVS3poFkdAY18Xa8Hv+nV9lChoBmgJaA9DCDP7PEZ5ZGLAlIaUUpRoFUteaBZHQGNfiWmgrYp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (215 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -238.47902933731675, "std_reward": 82.6269498831058, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T06:13:19.229808"}
|