testing-2-kitpot / rest_train.py
sksayril's picture
Upload 10 files
c51db28 verified
import os
import numpy as np
import pickle
import tensorflow as tf
from tqdm import tqdm
from keras.preprocessing import image
from keras.layers import GlobalMaxPooling2D
from keras.applications.resnet50 import ResNet50, preprocess_input
from numpy.linalg import norm
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model.trainable = False
model = tf.keras.Sequential([
model,
GlobalMaxPooling2D()
])
def extract_features(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img_to_array(img)
expanded_img_array = np.expand_dims(img_array, axis=0)
preprocessed_img = preprocess_input(expanded_img_array)
result = model.predict(preprocessed_img).flatten()
normalized_result = result / norm(result)
return normalized_result
root_folder = 'kitpotproduct'
feature_list = []
filenames = []
for root, dirs, files in os.walk(root_folder):
for file in tqdm(files):
if file.lower().endswith(('.png', '.jpg', '.jpeg','PNG','JPG','JPEG')):
img_path = os.path.join(root, file)
try:
img = image.load_img(img_path, target_size=(224, 224))
filenames.append(img_path)
feature_list.append(extract_features(img_path, model))
except (OSError, IOError, ValueError, Exception) as e:
print(f"Error processing file: {img_path}")
print(f"Error message: {str(e)}")
continue
with open('res_vector_embeddings.pkl', 'wb') as f:
pickle.dump(feature_list, f)
with open('res_filenames.pkl', 'wb') as f:
pickle.dump(filenames, f)