testing-2-kitpot / model.py
sksayril's picture
Upload 10 files
c51db28 verified
import os
import pickle
import sys
import keras
import numpy as np
from keras.preprocessing import image
from keras.layers import GlobalMaxPooling2D
from keras.applications.resnet50 import ResNet50, preprocess_input
from sklearn.neighbors import NearestNeighbors
from numpy.linalg import norm
model = None
feature_list = None
filenames = None
def load_model():
global model, feature_list, filenames
if model is None:
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model.trainable = False
model = keras.Sequential([
model,
GlobalMaxPooling2D()
])
script_dir = os.path.dirname(os.path.abspath(__file__))
embeddings_path = os.path.join(script_dir, 'res_vector_embeddings.pkl')
filenames_path = os.path.join(script_dir, 'res_filenames.pkl')
try:
with open(embeddings_path, 'rb') as emb_file, open(filenames_path, 'rb') as name_file:
feature_list = pickle.load(emb_file)
filenames = pickle.load(name_file)
except FileNotFoundError as e:
print(f"Error: {e}. Check if the required files exist in the specified path.")
sys.exit(1)
except Exception as e:
print(f"Error loading pickle files: {e}")
sys.exit(1)
def find_similar_images(image_path):
if model is None or feature_list is None or filenames is None:
load_model()
try:
query_img = image.load_img(image_path, target_size=(224, 224))
query_img_array = image.img_to_array(query_img)
expanded_query_img_array = np.expand_dims(query_img_array, axis=0)
preprocessed_query_img = preprocess_input(expanded_query_img_array)
query_result = model.predict(preprocessed_query_img).flatten()
normalized_query_result = query_result / norm(query_result)
neighbors = NearestNeighbors(n_neighbors=100, algorithm='brute', metric='euclidean')
neighbors.fit(feature_list)
distances, indices = neighbors.kneighbors([normalized_query_result])
similar_image_paths = [filenames[idx] for idx in indices[0][1:]]
return similar_image_paths
except FileNotFoundError as e:
print(f"Error: {e}. Check if the specified image file exists.")
return []
except Exception as e:
print(f"An error occurred: {e}")
return []
# def convert_file_paths(array_data):
# base_path = "uploads/catalog/product/"
# transformed_paths = [base_path + path.replace("\\", "/") for path in array_data]
# # Remove the "kitpotproduct/" prefix from each path
# transformed_paths = [path.replace("uploads/catalog/product/kitpotproduct/", "uploads/catalog/product/") for path in transformed_paths]
# return transformed_paths
def extract_filenames(paths):
return [path.split("\\")[-1] for path in paths]