File size: 2,869 Bytes
c51db28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import os
import pickle
import sys
import keras
import numpy as np
from keras.preprocessing import image
from keras.layers import GlobalMaxPooling2D
from keras.applications.resnet50 import ResNet50, preprocess_input
from sklearn.neighbors import NearestNeighbors
from numpy.linalg import norm
model = None
feature_list = None
filenames = None
def load_model():
global model, feature_list, filenames
if model is None:
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model.trainable = False
model = keras.Sequential([
model,
GlobalMaxPooling2D()
])
script_dir = os.path.dirname(os.path.abspath(__file__))
embeddings_path = os.path.join(script_dir, 'res_vector_embeddings.pkl')
filenames_path = os.path.join(script_dir, 'res_filenames.pkl')
try:
with open(embeddings_path, 'rb') as emb_file, open(filenames_path, 'rb') as name_file:
feature_list = pickle.load(emb_file)
filenames = pickle.load(name_file)
except FileNotFoundError as e:
print(f"Error: {e}. Check if the required files exist in the specified path.")
sys.exit(1)
except Exception as e:
print(f"Error loading pickle files: {e}")
sys.exit(1)
def find_similar_images(image_path):
if model is None or feature_list is None or filenames is None:
load_model()
try:
query_img = image.load_img(image_path, target_size=(224, 224))
query_img_array = image.img_to_array(query_img)
expanded_query_img_array = np.expand_dims(query_img_array, axis=0)
preprocessed_query_img = preprocess_input(expanded_query_img_array)
query_result = model.predict(preprocessed_query_img).flatten()
normalized_query_result = query_result / norm(query_result)
neighbors = NearestNeighbors(n_neighbors=100, algorithm='brute', metric='euclidean')
neighbors.fit(feature_list)
distances, indices = neighbors.kneighbors([normalized_query_result])
similar_image_paths = [filenames[idx] for idx in indices[0][1:]]
return similar_image_paths
except FileNotFoundError as e:
print(f"Error: {e}. Check if the specified image file exists.")
return []
except Exception as e:
print(f"An error occurred: {e}")
return []
# def convert_file_paths(array_data):
# base_path = "uploads/catalog/product/"
# transformed_paths = [base_path + path.replace("\\", "/") for path in array_data]
# # Remove the "kitpotproduct/" prefix from each path
# transformed_paths = [path.replace("uploads/catalog/product/kitpotproduct/", "uploads/catalog/product/") for path in transformed_paths]
# return transformed_paths
def extract_filenames(paths):
return [path.split("\\")[-1] for path in paths] |