Evaluation results for skim945/bert-finetuned-squad model as a base model for other tasks
#1
by
eladven
- opened
README.md
CHANGED
@@ -52,3 +52,17 @@ The following hyperparameters were used during training:
|
|
52 |
- Pytorch 1.13.1+cu116
|
53 |
- Datasets 2.9.0
|
54 |
- Tokenizers 0.13.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
- Pytorch 1.13.1+cu116
|
53 |
- Datasets 2.9.0
|
54 |
- Tokenizers 0.13.2
|
55 |
+
|
56 |
+
## Model Recycling
|
57 |
+
|
58 |
+
[Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=2.01&mnli_lp=nan&20_newsgroup=-0.39&ag_news=0.14&amazon_reviews_multi=0.15&anli=0.31&boolq=2.43&cb=32.35&cola=-3.81&copa=-2.15&dbpedia=0.40&esnli=-0.65&financial_phrasebank=13.04&imdb=-0.31&isear=1.56&mnli=0.09&mrpc=-2.33&multirc=-2.67&poem_sentiment=6.35&qnli=1.20&qqp=0.25&rotten_tomatoes=0.07&rte=7.53&sst2=4.61&sst_5bins=-0.05&stsb=2.30&trec_coarse=-0.11&trec_fine=13.47&tweet_ev_emoji=0.06&tweet_ev_emotion=-0.09&tweet_ev_hate=0.82&tweet_ev_irony=1.77&tweet_ev_offensive=0.05&tweet_ev_sentiment=0.24&wic=5.15&wnli=0.80&wsc=-10.14&yahoo_answers=-0.13&model_name=skim945%2Fbert-finetuned-squad&base_name=bert-base-cased) using skim945/bert-finetuned-squad as a base model yields average score of 74.43 in comparison to 72.43 by bert-base-cased.
|
59 |
+
|
60 |
+
The model is ranked 1st among all tested models for the bert-base-cased architecture as of 12/02/2023
|
61 |
+
Results:
|
62 |
+
|
63 |
+
| 20_newsgroup | ag_news | amazon_reviews_multi | anli | boolq | cb | cola | copa | dbpedia | esnli | financial_phrasebank | imdb | isear | mnli | mrpc | multirc | poem_sentiment | qnli | qqp | rotten_tomatoes | rte | sst2 | sst_5bins | stsb | trec_coarse | trec_fine | tweet_ev_emoji | tweet_ev_emotion | tweet_ev_hate | tweet_ev_irony | tweet_ev_offensive | tweet_ev_sentiment | wic | wnli | wsc | yahoo_answers |
|
64 |
+
|---------------:|----------:|-----------------------:|-------:|--------:|--------:|--------:|-------:|----------:|--------:|-----------------------:|-------:|--------:|--------:|--------:|----------:|-----------------:|-------:|------:|------------------:|--------:|-------:|------------:|--------:|--------------:|------------:|-----------------:|-------------------:|----------------:|-----------------:|---------------------:|---------------------:|--------:|-------:|--------:|----------------:|
|
65 |
+
| 81.3463 | 89.2 | 65.86 | 46.875 | 70.7006 | 95.8333 | 78.0374 | 50 | 79.1667 | 88.9862 | 81.4 | 90.84 | 69.9478 | 83.4743 | 80.6011 | 57.8 | 74.0385 | 91.2 | 90.2 | 84.6154 | 70.1613 | 96.1 | 51.3575 | 86.8206 | 96.5201 | 86.4469 | 44.296 | 78.7474 | 53.6027 | 66.9643 | 84.3023 | 68.463 | 69.9262 | 53.125 | 51.7857 | 70.9 |
|
66 |
+
|
67 |
+
|
68 |
+
For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)
|