File size: 12,143 Bytes
7ca1baf
 
 
 
 
9ed253c
09ebdbd
7ca1baf
3d17d70
28ec6a4
caa599e
3757b70
22317c0
caa599e
f3fc250
16bb7f0
f3fc250
 
 
d6e2545
ec2329f
355b4c2
4f45167
692e8fc
4f45167
355b4c2
 
 
16bb7f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99b0dd6
355b4c2
 
4f45167
e87edd2
4f45167
355b4c2
7d11710
7bd31a0
99b0dd6
7d11710
ec2329f
16bb7f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355b4c2
16bb7f0
ec2329f
72ee961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec2329f
e3ac59a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
language:
- en
pipeline_tag: image-segmentation
tags:
- medical
library_name: fastMONAI
---
# Endometrial cancer segmentation
This repository contains weights and exported learner (encapsulates both the model architecture and its trained parameters) for a deep learning model designed to automate the segmentation of endometrial cancer on MR images. 
Our VIBE model utilizes a Residual U-Net architecture, trained on data derived from the study [Automated segmentation of endometrial cancer on MR images using deep learning](https://link.springer.com/content/pdf/10.1038/s41598-020-80068-9.pdf).
The primary objective of this repository is to reproduce the results reported in the study and to integrate this model into research PACS (see [Results for VIBE](#results-for-vibe) section). 
In addition, we have looked at improving the segmentation performance using multi-sequence MR images (T2w, VIBE, and ADC) (see [Results for multi-sequence (T2, VIBE, and ADC)](#results-for-multi-sequence-t2-vibe-and-adc) section).

## Requirements
Last checked and validated with fastMONAI version 0.3.9. Please ensure that you have the correct version of fastMONAI installed to guarantee the correct operation of the model.

## Usage
The source code for training the model and running inference on your own data is available at: https://github.com/MMIV-ML/fastMONAI/tree/master/research/endometrial_cancer.
Test our model live with the Gradio app for VIBE on [Hugging Face Spaces](https://skaliy-endometrial-cancer-segmentation-app.hf.space).

## Results for VIBE
Note that our results are not directly comparable with the results reported in [study](https://link.springer.com/content/pdf/10.1038/s41598-020-80068-9.pdf), as we opted to use the test set for validation to allocate more data to training. Unlike the approach detailed in the study, we refrained from post-processing steps, such as retaining only the largest object. 
Predictions from new test cases indicate that this method could occasionally eliminate the tumor.
Below is the box plot showcasing predictions on the validation set:![](vibe_boxplot.png)

The results from the validation set are also presented in the table below:

|    |   subject_id |   tumor_vol |   inter_rater |    r1_ml |      r2_ml |   n_components |
|---:|-------------:|------------:|--------------:|---------:|-----------:|---------------:|
|  0 |           29 |        4.16 |     0.201835  | 0.806382 | 0.00623053 |              3 |
|  1 |           32 |        8    |     0.684142  | 0.293306 | 0.209449   |              4 |
|  2 |           36 |       19.06 |     0.92875   | 0.793055 | 0.784799   |              2 |
|  3 |           47 |       11.01 |     0.944209  | 0.900945 | 0.898409   |              2 |
|  4 |           50 |        6.26 |     0.722867  | 0.614357 | 0.624832   |              1 |
|  5 |           65 |       13.09 |     0.930613  | 0.879279 | 0.850546   |              2 |
|  6 |           67 |        3.71 |     0.943498  | 0.887189 | 0.878163   |              2 |
|  7 |           75 |        7.16 |     0.263539  | 0.774237 | 0.266619   |              2 |
|  8 |           86 |        7.04 |     0.842577  | 0.821208 | 0.798148   |              1 |
|  9 |          135 |        8.1  |     0.839964  | 0.758176 | 0.680348   |              2 |
| 10 |          140 |       19.78 |     0.895506  | 0.936177 | 0.874019   |              4 |
| 11 |          164 |       16.98 |     0.905008  | 0.923559 | 0.887268   |              1 |
| 12 |          246 |        6.59 |     0.899448  | 0.895311 | 0.860322   |              3 |
| 13 |          255 |       36.22 |     0.955784  | 0.927517 | 0.921816   |              6 |
| 14 |          343 |        0.69 |     0.528261  | 0.840237 | 0.600751   |              4 |
| 15 |          349 |        2.96 |     0.912664  | 0.828181 | 0.778983   |              1 |
| 16 |          367 |        1.02 |     0.0734848 | 0.391737 | 0.118035   |              1 |
| 17 |          370 |       10.82 |     0.953443  | 0.917094 | 0.908893   |              1 |
| 18 |          371 |        3.83 |     0.859781  | 0.684751 | 0.618114   |              1 |
| 19 |          375 |       11.67 |     0.911141  | 0.921079 | 0.91056    |              4 |
| 20 |          377 |        4.37 |     0.782994  | 0.712791 | 0.680165   |              1 |
| 21 |          381 |        7.63 |     0.89199   | 0.246428 | 0.238641   |              1 |
| 22 |          385 |        2.67 |     0.803215  | 0.641916 | 0.60169    |              1 |
| 23 |          395 |        0.68 |     0.770738  | 0.198273 | 0.236343   |              5 |
| 24 |          397 |        5.94 |     0.904544  | 0.882265 | 0.874036   |              3 |
| 25 |          409 |       11.86 |     0.944934  | 0.900727 | 0.900767   |              1 |
| 26 |          411 |        5.98 |     0.949977  | 0.933271 | 0.929499   |              1 |
| 27 |          425 |        0.91 |     0.802867  | 0.589069 | 0.545761   |              1 |
| 28 |          434 |       94.42 |     0.894601  | 0.590408 | 0.580585   |              1 |
| 29 |          531 |       22.08 |     0.89225   | 0.555066 | 0.505109   |              1 |
| 30 |          540 |        8.35 |     0.923702  | 0.855009 | 0.840958   |              1 |

<b>Median DSC</b>: 0.8946, 0.8212, 0.779

Prediction on a new subject in the research PACS: 
![](research_pacs_predicition.png)

## Results for multi-sequence (T2, VIBE, and ADC)
The box plot of the predictions on the validation set: 
![](t2_vibe_adc_boxplot.png)

The results from the validation set are also presented in the table below:

|    |   subject_id |   tumor_vol |   inter_rater |    r1_ml |     r2_ml |   n_components |
|---:|-------------:|------------:|--------------:|---------:|----------:|---------------:|
|  0 |           29 |        4.16 |     0.201835  | 0.859937 | 0.148586  |              4 |
|  1 |           32 |        8    |     0.684142  | 0.662779 | 0.515479  |             10 |
|  2 |           36 |       19.06 |     0.92875   | 0.902343 | 0.888306  |              1 |
|  3 |           47 |       11.01 |     0.944209  | 0.907344 | 0.907     |              3 |
|  4 |           50 |        6.26 |     0.722867  | 0.581594 | 0.540991  |              5 |
|  5 |           65 |       13.09 |     0.930613  | 0.889782 | 0.862255  |              4 |
|  6 |           67 |        3.71 |     0.943498  | 0.851658 | 0.842331  |              2 |
|  7 |           75 |        7.16 |     0.263539  | 0.750551 | 0.205457  |              2 |
|  8 |           86 |        7.04 |     0.842577  | 0.87216  | 0.81374   |              1 |
|  9 |          135 |        8.1  |     0.839964  | 0.80436  | 0.747164  |              1 |
| 10 |          140 |       19.78 |     0.895506  | 0.907457 | 0.852548  |              1 |
| 11 |          164 |       16.98 |     0.905008  | 0.92533  | 0.893135  |              2 |
| 12 |          246 |        6.59 |     0.899448  | 0.906569 | 0.852195  |              5 |
| 13 |          255 |       36.22 |     0.955784  | 0.924517 | 0.927624  |              2 |
| 14 |          343 |        0.69 |     0.528261  | 0.868251 | 0.457711  |              3 |
| 15 |          349 |        2.96 |     0.912664  | 0.85214  | 0.819898  |              1 |
| 16 |          367 |        1.02 |     0.0734848 | 0.383455 | 0.0891463 |              3 |
| 17 |          370 |       10.82 |     0.953443  | 0.916154 | 0.911768  |              2 |
| 18 |          371 |        3.83 |     0.859781  | 0.593136 | 0.565848  |              8 |
| 19 |          375 |       11.67 |     0.911141  | 0.898501 | 0.910147  |              3 |
| 20 |          377 |        4.37 |     0.782994  | 0.713798 | 0.646684  |              3 |
| 21 |          381 |        7.63 |     0.89199   | 0.4375   | 0.430847  |              1 |
| 22 |          385 |        2.67 |     0.803215  | 0.688608 | 0.624595  |              1 |
| 23 |          395 |        0.68 |     0.770738  | 0.385992 | 0.43154   |              2 |
| 24 |          397 |        5.94 |     0.904544  | 0.868022 | 0.850653  |              6 |
| 25 |          409 |       11.86 |     0.944934  | 0.83407  | 0.833206  |              5 |
| 26 |          411 |        5.98 |     0.949977  | 0.867137 | 0.866112  |              1 |
| 27 |          425 |        0.91 |     0.802867  | 0.557732 | 0.475499  |              3 |
| 28 |          434 |       94.42 |     0.894601  | 0.618916 | 0.605596  |              6 |
| 29 |          531 |       22.08 |     0.89225   | 0.349648 | 0.319533  |              1 |
| 30 |          540 |        8.35 |     0.923702  | 0.890343 | 0.88052   |              1 |

<b>Median DSC</b>: 0.8946, 0.8521, 0.8137

## Results for multi-sequence (T2, VIBE, and ADC) with extra training data (n=54)
Need to run cross-validation to make a better comparison.

|    |   subject_id |   tumor_vol |   inter_rater |    r1_ml |     r2_ml |   n_components |
|---:|-------------:|------------:|--------------:|---------:|----------:|---------------:|
|  0 |           29 |        4.16 |     0.201835  | 0.836437 | 0.0599303 |              2 |
|  1 |           32 |        8    |     0.684142  | 0.65186  | 0.503093  |             11 |
|  2 |           36 |       19.06 |     0.92875   | 0.876779 | 0.862773  |              3 |
|  3 |           47 |       11.01 |     0.944209  | 0.914218 | 0.911429  |              4 |
|  4 |           50 |        6.26 |     0.722867  | 0.667869 | 0.60398   |              1 |
|  5 |           65 |       13.09 |     0.930613  | 0.88374  | 0.859066  |              1 |
|  6 |           67 |        3.71 |     0.943498  | 0.861391 | 0.851904  |              1 |
|  7 |           75 |        7.16 |     0.263539  | 0.769195 | 0.236445  |              4 |
|  8 |           86 |        7.04 |     0.842577  | 0.848937 | 0.80314   |              3 |
|  9 |          135 |        8.1  |     0.839964  | 0.810392 | 0.732383  |              1 |
| 10 |          140 |       19.78 |     0.895506  | 0.92261  | 0.865316  |              1 |
| 11 |          164 |       16.98 |     0.905008  | 0.923593 | 0.879799  |              5 |
| 12 |          246 |        6.59 |     0.899448  | 0.919342 | 0.864234  |              1 |
| 13 |          255 |       36.22 |     0.955784  | 0.939234 | 0.938806  |              2 |
| 14 |          343 |        0.69 |     0.528261  | 0.839357 | 0.448649  |              5 |
| 15 |          349 |        2.96 |     0.912664  | 0.877018 | 0.839009  |              1 |
| 16 |          367 |        1.02 |     0.0734848 | 0.255149 | 0.0615073 |              1 |
| 17 |          370 |       10.82 |     0.953443  | 0.916431 | 0.907043  |             18 |
| 18 |          371 |        3.83 |     0.859781  | 0.508698 | 0.475138  |              1 |
| 19 |          375 |       11.67 |     0.911141  | 0.90593  | 0.910805  |              1 |
| 20 |          377 |        4.37 |     0.782994  | 0.622583 | 0.598939  |              4 |
| 21 |          381 |        7.63 |     0.89199   | 0.392978 | 0.381061  |              1 |
| 22 |          385 |        2.67 |     0.803215  | 0.666327 | 0.583576  |              2 |
| 23 |          395 |        0.68 |     0.770738  | 0.53442  | 0.54433   |              4 |
| 24 |          397 |        5.94 |     0.904544  | 0.867964 | 0.868074  |              5 |
| 25 |          409 |       11.86 |     0.944934  | 0.826939 | 0.827658  |              5 |
| 26 |          411 |        5.98 |     0.949977  | 0.786394 | 0.796158  |              1 |
| 27 |          425 |        0.91 |     0.802867  | 0.508261 | 0.43545   |              1 |
| 28 |          434 |       94.42 |     0.894601  | 0.77102  | 0.758085  |              2 |
| 29 |          531 |       22.08 |     0.89225   | 0.271076 | 0.253303  |              1 |
| 30 |          540 |        8.35 |     0.923702  | 0.898613 | 0.890637  |              1 |

<b>Median DSC</b>: 0.8946, 0.8364, 0.7962

## Support and Contribution
For any issues related to the model or the source code, please open an issue in the corresponding GitHub repository. Contributions to the code or the model are welcome and should be proposed through a pull request.