sjrhuschlee
commited on
Commit
•
8544700
1
Parent(s):
33c155a
Upload modeling_t5qa.py with huggingface_hub
Browse files- modeling_t5qa.py +201 -0
modeling_t5qa.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import warnings
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import CrossEntropyLoss
|
8 |
+
|
9 |
+
from transformers.modeling_outputs import (
|
10 |
+
BaseModelOutput,
|
11 |
+
Seq2SeqQuestionAnsweringModelOutput,
|
12 |
+
)
|
13 |
+
from transformers.models.t5.configuration_t5 import T5Config
|
14 |
+
from transformers.models.t5.modeling_t5 import T5PreTrainedModel, T5Stack
|
15 |
+
|
16 |
+
|
17 |
+
class T5ForQuestionAnswering(T5PreTrainedModel):
|
18 |
+
_keys_to_ignore_on_load_missing = [
|
19 |
+
r"encoder.embed_tokens.weight",
|
20 |
+
r"decoder.embed_tokens.weight",
|
21 |
+
]
|
22 |
+
_keys_to_ignore_on_load_unexpected = [
|
23 |
+
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
24 |
+
]
|
25 |
+
|
26 |
+
def __init__(self, config: T5Config):
|
27 |
+
super().__init__(config)
|
28 |
+
self.model_dim = config.d_model
|
29 |
+
|
30 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
31 |
+
|
32 |
+
encoder_config = copy.deepcopy(config)
|
33 |
+
encoder_config.is_decoder = False
|
34 |
+
encoder_config.use_cache = False
|
35 |
+
encoder_config.is_encoder_decoder = False
|
36 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
37 |
+
|
38 |
+
decoder_config = copy.deepcopy(config)
|
39 |
+
decoder_config.is_decoder = True
|
40 |
+
decoder_config.is_encoder_decoder = False
|
41 |
+
decoder_config.num_layers = config.num_decoder_layers
|
42 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
43 |
+
|
44 |
+
self.num_labels = config.num_labels
|
45 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
46 |
+
|
47 |
+
# Initialize weights and apply final processing
|
48 |
+
self.post_init()
|
49 |
+
|
50 |
+
# Model parallel
|
51 |
+
self.model_parallel = False
|
52 |
+
self.device_map = None
|
53 |
+
|
54 |
+
def get_input_embeddings(self):
|
55 |
+
return self.shared
|
56 |
+
|
57 |
+
def set_input_embeddings(self, new_embeddings):
|
58 |
+
self.shared = new_embeddings
|
59 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
60 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
61 |
+
|
62 |
+
def get_encoder(self):
|
63 |
+
return self.encoder
|
64 |
+
|
65 |
+
def get_decoder(self):
|
66 |
+
return self.decoder
|
67 |
+
|
68 |
+
def forward(
|
69 |
+
self,
|
70 |
+
input_ids: Optional[torch.LongTensor] = None,
|
71 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
72 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
73 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
74 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
75 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
76 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
77 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
78 |
+
start_positions: Optional[torch.LongTensor] = None,
|
79 |
+
end_positions: Optional[torch.LongTensor] = None,
|
80 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
81 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
82 |
+
use_cache: Optional[bool] = None,
|
83 |
+
output_attentions: Optional[bool] = None,
|
84 |
+
output_hidden_states: Optional[bool] = None,
|
85 |
+
return_dict: Optional[bool] = None,
|
86 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]:
|
87 |
+
r"""
|
88 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
89 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
90 |
+
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
|
91 |
+
are not taken into account for computing the loss.
|
92 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
93 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
94 |
+
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
|
95 |
+
are not taken into account for computing the loss.
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
"""
|
99 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
100 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
101 |
+
if start_positions is not None and end_positions is not None:
|
102 |
+
use_cache = False
|
103 |
+
|
104 |
+
# Copied from models.bart.modeling_bart.BartModel.forward
|
105 |
+
# different to other models, T5 automatically creates decoder_input_ids from
|
106 |
+
# input_ids if no decoder_input_ids are provided
|
107 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
108 |
+
if input_ids is None:
|
109 |
+
raise ValueError(
|
110 |
+
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
|
111 |
+
"passed, `input_ids` cannot be `None`. Please pass either "
|
112 |
+
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
|
113 |
+
)
|
114 |
+
decoder_input_ids = self._shift_right(input_ids)
|
115 |
+
|
116 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
117 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
118 |
+
|
119 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
120 |
+
if head_mask is not None and decoder_head_mask is None:
|
121 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
122 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
123 |
+
decoder_head_mask = head_mask
|
124 |
+
|
125 |
+
# Encode if needed (training, first prediction pass)
|
126 |
+
if encoder_outputs is None:
|
127 |
+
encoder_outputs = self.encoder(
|
128 |
+
input_ids=input_ids,
|
129 |
+
attention_mask=attention_mask,
|
130 |
+
inputs_embeds=inputs_embeds,
|
131 |
+
head_mask=head_mask,
|
132 |
+
output_attentions=output_attentions,
|
133 |
+
output_hidden_states=output_hidden_states,
|
134 |
+
return_dict=return_dict,
|
135 |
+
)
|
136 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
137 |
+
encoder_outputs = BaseModelOutput(
|
138 |
+
last_hidden_state=encoder_outputs[0],
|
139 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
140 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
141 |
+
)
|
142 |
+
|
143 |
+
hidden_states = encoder_outputs[0]
|
144 |
+
|
145 |
+
# Decode
|
146 |
+
decoder_outputs = self.decoder(
|
147 |
+
input_ids=decoder_input_ids,
|
148 |
+
attention_mask=decoder_attention_mask,
|
149 |
+
inputs_embeds=decoder_inputs_embeds,
|
150 |
+
past_key_values=None,
|
151 |
+
encoder_hidden_states=hidden_states,
|
152 |
+
encoder_attention_mask=attention_mask,
|
153 |
+
head_mask=decoder_head_mask,
|
154 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
155 |
+
use_cache=use_cache,
|
156 |
+
output_attentions=output_attentions,
|
157 |
+
output_hidden_states=output_hidden_states,
|
158 |
+
return_dict=return_dict,
|
159 |
+
)
|
160 |
+
|
161 |
+
sequence_output = decoder_outputs[0]
|
162 |
+
|
163 |
+
logits = self.qa_outputs(sequence_output)
|
164 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
165 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
166 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
167 |
+
|
168 |
+
total_loss = None
|
169 |
+
if start_positions is not None and end_positions is not None:
|
170 |
+
# If we are on multi-GPU, split add a dimension
|
171 |
+
if len(start_positions.size()) > 1:
|
172 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
173 |
+
if len(end_positions.size()) > 1:
|
174 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
175 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
176 |
+
ignored_index = start_logits.size(1)
|
177 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
178 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
179 |
+
|
180 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
181 |
+
start_loss = loss_fct(start_logits, start_positions)
|
182 |
+
end_loss = loss_fct(end_logits, end_positions)
|
183 |
+
total_loss = (start_loss + end_loss) / 2
|
184 |
+
|
185 |
+
if not return_dict:
|
186 |
+
output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
|
187 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
188 |
+
|
189 |
+
return Seq2SeqQuestionAnsweringModelOutput(
|
190 |
+
loss=total_loss,
|
191 |
+
start_logits=start_logits,
|
192 |
+
end_logits=end_logits,
|
193 |
+
past_key_values=decoder_outputs.past_key_values,
|
194 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
195 |
+
decoder_attentions=decoder_outputs.attentions,
|
196 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
197 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
198 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
199 |
+
encoder_attentions=encoder_outputs.attentions,
|
200 |
+
)
|
201 |
+
|