skirres commited on
Commit
3dde263
1 Parent(s): d3e9b3f

Initial commit (#1)

Browse files

- Model sources and card (b17685940630938dee14d57d57214f065f5d2323)

1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 512,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ ---
5
+
6
+ # Model Card for `vectorizer-v1-S-en`
7
+
8
+ This model is a vectorizer developed by Sinequa. It produces an embedding vector given a passage or a query. The
9
+ passage vectors are stored in our vector index and the query vector is used at query time to look up relevant passages
10
+ in the index.
11
+
12
+ Model name: `vectorizer-v1-S-en`
13
+
14
+ ## Supported Languages
15
+
16
+ The model was trained and tested in the following languages:
17
+
18
+ - English
19
+
20
+ ## Scores
21
+
22
+ | Metric | Value |
23
+ |:-----------------------|------:|
24
+ | Relevance (Recall@100) | 0.456 |
25
+
26
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
27
+ [details below](#evaluation-metrics)).
28
+
29
+ ## Inference Times
30
+
31
+ | GPU | Batch size 1 (at query time) | Batch size 32 (at indexing) |
32
+ |:-----------|-----------------------------:|----------------------------:|
33
+ | NVIDIA A10 | 2 ms | 14 ms |
34
+ | NVIDIA T4 | 4 ms | 52 ms |
35
+
36
+ The inference times only measure the time the model takes to process a single batch, it does not include pre- or
37
+ post-processing steps like the tokenization.
38
+
39
+ ## Requirements
40
+
41
+ - Minimal Sinequa version: 11.10.0
42
+ - GPU memory usage: 330 MiB
43
+
44
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
45
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
46
+ can be around 0.5 to 1 GiB depending on the used GPU.
47
+
48
+ ## Model Details
49
+
50
+ ### Overview
51
+
52
+ - Number of parameters: 29 million
53
+ - Base language model: [English BERT-Small](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8)
54
+ - Insensitive to casing and accents
55
+ - Output dimensions: 256 (reduced with an additional dense layer)
56
+ - Training procedure: TBD
57
+
58
+ ### Training Data
59
+
60
+ TBD
61
+
62
+ ### Evaluation Metrics
63
+
64
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
65
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
66
+
67
+ | Dataset | Recall@100 |
68
+ |:------------------|-----------:|
69
+ | Average | 0.456 |
70
+ | | |
71
+ | Arguana | 0.832 |
72
+ | CLIMATE-FEVER | 0.342 |
73
+ | DBPedia Entity | 0.299 |
74
+ | FEVER | 0.660 |
75
+ | FiQA-2018 | 0.301 |
76
+ | HotpotQA | 0.434 |
77
+ | MS MARCO | 0.610 |
78
+ | NFCorpus | 0.159 |
79
+ | NQ | 0.671 |
80
+ | Quora | 0.966 |
81
+ | SCIDOCS | 0.194 |
82
+ | SciFact | 0.592 |
83
+ | TREC-COVID | 0.037 |
84
+ | Webis-Touche-2020 | 0.285 |
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 512,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 2048,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 8,
16
+ "num_hidden_layers": 4,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.15.0.dev0",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 30522
24
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f52fb2264f3f0fcd81ee95ffb0f80eaefb424981157c3e999d19753c73d37933
3
+ size 115084877
reduction_layer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5307a192d51eb598680ed05795a0836b3108ff596e9c3595a7e39246feada790
3
+ size 526311
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff