File size: 3,767 Bytes
eef7272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e23997c
eef7272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e23997c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
language:
  - de
  - en
  - es
  - fr
  - it
  - ja
  - nl
  - pt
  - zh
---

# Model Card for `passage-ranker.strawberry`

This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
used to order search results.

Model name: `passage-ranker.strawberry`

## Supported Languages

The model was trained and tested in the following languages:

- Chinese (simplified)
- Dutch
- English
- French
- German
- Italian
- Japanese
- Portuguese
- Spanish

Besides the aforementioned languages, basic support can be expected for additional 91 languages that were used during
the pretraining of the base model (see Appendix A of [XLM-R paper](https://arxiv.org/abs/1911.02116)).

## Scores

| Metric              | Value |
|:--------------------|------:|
| Relevance (NDCG@10) | 0.451 |

Note that the relevance score is computed as an average over 14 retrieval datasets (see
[details below](#evaluation-metrics)).

## Inference Times

| GPU        | Batch size 32 |
|:-----------|--------------:|
| NVIDIA A10 |         22 ms |
| NVIDIA T4  |         63 ms |

The inference times only measure the time the model takes to process a single batch, it does not include pre- or
post-processing steps like the tokenization.

## Requirements

- Minimal Sinequa version: 11.10.0
- GPU memory usage: 1060 MiB

Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
can be around 0.5 to 1 GiB depending on the used GPU.

## Model Details

### Overview

- Number of parameters: 107 million
- Base language model:
  [mMiniLMv2-L6-H384-distilled-from-XLMR-Large](https://huggingface.co/nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large)
  ([Paper](https://arxiv.org/abs/2012.15828), [GitHub](https://github.com/microsoft/unilm/tree/master/minilm))
- Insensitive to casing and accents
- Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)

### Training Data

- MS MARCO Passage Ranking
  ([Paper](https://arxiv.org/abs/1611.09268),
  [Official Page](https://microsoft.github.io/msmarco/),
  [English & translated datasets on the HF dataset hub](https://huggingface.co/datasets/unicamp-dl/mmarco))
    - Original English dataset
    - Translated datasets for the other eight supported languages

### Evaluation Metrics

To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
[BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.

| Dataset           | NDCG@10 |
|:------------------|--------:|
| Average           |   0.451 |
|                   |         |
| Arguana           |   0.527 |
| CLIMATE-FEVER     |   0.167 |
| DBPedia Entity    |   0.343 |
| FEVER             |   0.698 |
| FiQA-2018         |   0.297 |
| HotpotQA          |   0.648 |
| MS MARCO          |   0.409 |
| NFCorpus          |   0.317 |
| NQ                |   0.430 |
| Quora             |   0.761 |
| SCIDOCS           |   0.135 |
| SciFact           |   0.597 |
| TREC-COVID        |   0.670 |
| Webis-Touche-2020 |   0.311 |

We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its
multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics
for the existing languages.

| Language              | NDCG@10 |
|:----------------------|--------:|
| Chinese (simplified)  |   0.414 |
| French                |   0.382 |
| German                |   0.320 |
| Japanese              |   0.479 |
| Spanish               |   0.418 |