File size: 5,641 Bytes
d4a1a0e 33112ca d4a1a0e 33112ca d4a1a0e 0093cfb 33112ca d4a1a0e 0093cfb d4a1a0e 0093cfb d4a1a0e 0093cfb d4a1a0e 0093cfb d4a1a0e 33112ca d4a1a0e 33112ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
language:
- de
- en
- es
- fr
- it
- ja
- nl
- pl
- pt
- zh
---
# Model Card for `passage-ranker.pistachio`
This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results.
Model name: `passage-ranker.pistachio`
## Supported Languages
The model was trained and tested in the following languages:
- Chinese (simplified)
- Dutch
- English
- French
- German
- Italian
- Japanese
- Polish
- Portuguese
- Spanish
Besides the aforementioned languages, basic support can be expected for additional 93 languages that were used during the pretraining of the base model (see
[list of languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages)).
## Scores
| Metric | Value |
|:----------------------------|------:|
| English Relevance (NDCG@10) | 0.474 |
| Polish Relevance (NDCG@10) | 0.380 |
Note that the relevance score is computed as an average over several retrieval datasets (see
[details below](#evaluation-metrics)).
## Inference Times
| GPU | Quantization type | Batch size 1 | Batch size 32 |
|:------------------------------------------|:------------------|---------------:|---------------:|
| NVIDIA A10 | FP16 | 2 ms | 28 ms |
| NVIDIA A10 | FP32 | 4 ms | 82 ms |
| NVIDIA T4 | FP16 | 3 ms | 65 ms |
| NVIDIA T4 | FP32 | 14 ms | 369 ms |
| NVIDIA L4 | FP16 | 3 ms | 38 ms |
| NVIDIA L4 | FP32 | 5 ms | 123 ms |
## Gpu Memory usage
| Quantization type | Memory |
|:-------------------------------------------------|-----------:|
| FP16 | 850 MiB |
| FP32 | 1200 MiB |
Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
can be around 0.5 to 1 GiB depending on the used GPU.
## Requirements
- Minimal Sinequa version: 11.10.0
- Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
- [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)
## Model Details
### Overview
- Number of parameters: 167 million
- Base language model: [Multilingual BERT-Base](https://huggingface.co/bert-base-multilingual-uncased)
- Insensitive to casing and accents
- Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
### Training Data
- MS MARCO Passage Ranking
([Paper](https://arxiv.org/abs/1611.09268),
[Official Page](https://microsoft.github.io/msmarco/),
[English & translated datasets on the HF dataset hub](https://huggingface.co/datasets/unicamp-dl/mmarco), [translated dataset in Polish on the HF dataset hub](https://huggingface.co/datasets/clarin-knext/msmarco-pl))
- Original English dataset
- Translated datasets for the other nine supported languages
### Evaluation Metrics
##### English
To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
[BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
| Dataset | NDCG@10 |
|:------------------|--------:|
| Average | 0.474 |
| | |
| Arguana | 0.539 |
| CLIMATE-FEVER | 0.230 |
| DBPedia Entity | 0.369 |
| FEVER | 0.765 |
| FiQA-2018 | 0.329 |
| HotpotQA | 0.694 |
| MS MARCO | 0.413 |
| NFCorpus | 0.337 |
| NQ | 0.486 |
| Quora | 0.714 |
| SCIDOCS | 0.144 |
| SciFact | 0.649 |
| TREC-COVID | 0.651 |
| Webis-Touche-2020 | 0.312 |
#### Polish
This model has polish capacities, that are being evaluated over a subset of
the [PIRBenchmark](https://github.com/sdadas/pirb) with BM25 as the first stage retrieval.
| Dataset | NDCG@10 |
|:--------------|--------:|
| Average | 0.380 |
| | |
| arguana-pl | 0.285 |
| dbpedia-pl | 0.283 |
| fiqa-pl | 0.223 |
| hotpotqa-pl | 0.603 |
| msmarco-pl | 0.259 |
| nfcorpus-pl | 0.293 |
| nq-pl | 0.355 |
| quora-pl | 0.613 |
| scidocs-pl | 0.128 |
| scifact-pl | 0.581 |
| trec-covid-pl | 0.560 |
#### Other languages
We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its
multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics
for the existing languages.
| Language | NDCG@10 |
|:----------------------|--------:|
| Chinese (simplified) | 0.454 |
| French | 0.439 |
| German | 0.418 |
| Japanese | 0.517 |
| Spanish | 0.487 | |