Text Classification
Transformers
PyTorch
bert
Inference Endpoints
skirres commited on
Commit
b1da154
·
1 Parent(s): d19609c

Add model sources and card

Browse files
Files changed (4) hide show
  1. README.md +103 -0
  2. config.json +23 -0
  3. pytorch_model.bin +3 -0
  4. tokenizer.json +0 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ ---
8
+
9
+ # Model Card for `passage-ranker-v1-L-multilingual`
10
+
11
+ This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
12
+ used to order search results.
13
+
14
+ Model name: `passage-ranker-v1-L-multilingual`
15
+
16
+ ## Supported Languages
17
+
18
+ The model was trained and tested in the following languages:
19
+
20
+ - English
21
+ - French
22
+ - German
23
+ - Spanish
24
+
25
+ ## Scores
26
+
27
+ | Metric | Value |
28
+ |:--------------------|------:|
29
+ | Relevance (NDCG@10) | 0.471 |
30
+
31
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
32
+ [details below](#evaluation-metrics)).
33
+
34
+ ## Inference Times
35
+
36
+ | GPU | Batch size 32 |
37
+ |:-----------|--------------:|
38
+ | NVIDIA A10 | 83 ms |
39
+ | NVIDIA T4 | 357 ms |
40
+
41
+ The inference times only measure the time the model takes to process a single batch, it does not include pre- or
42
+ post-processing steps like the tokenization.
43
+
44
+ ## Requirements
45
+
46
+ - Minimal Sinequa version: 11.10.0
47
+ - GPU memory usage: 1130 MiB
48
+
49
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
50
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
51
+ can be around 0.5 to 1 GiB depending on the used GPU.
52
+
53
+ ## Model Details
54
+
55
+ ### Overview
56
+
57
+ - Number of parameters: 124 million
58
+ - Base language model: Homegrown Sinequa BERT-Base ([Paper](https://arxiv.org/abs/1810.04805)) pretrained in the four
59
+ supported languages
60
+ - Insensitive to casing and accents
61
+ - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
62
+
63
+ ### Training Data
64
+
65
+ - Probably-Asked Questions
66
+ ([Paper](https://arxiv.org/abs/2102.07033),
67
+ [Official Page](https://github.com/facebookresearch/PAQ))
68
+ - Original English dataset
69
+ - Translated datasets for the other three supported languages
70
+
71
+ ### Evaluation Metrics
72
+
73
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
74
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
75
+
76
+ | Dataset | NDCG@10 |
77
+ |:------------------|--------:|
78
+ | Average | 0.471 |
79
+ | | |
80
+ | Arguana | 0.583 |
81
+ | CLIMATE-FEVER | 0.150 |
82
+ | DBPedia Entity | 0.366 |
83
+ | FEVER | 0.734 |
84
+ | FiQA-2018 | 0.288 |
85
+ | HotpotQA | 0.698 |
86
+ | MS MARCO | 0.341 |
87
+ | NFCorpus | 0.345 |
88
+ | NQ | 0.483 |
89
+ | Quora | 0.766 |
90
+ | SCIDOCS | 0.142 |
91
+ | SciFact | 0.654 |
92
+ | TREC-COVID | 0.711 |
93
+ | Webis-Touche-2020 | 0.334 |
94
+
95
+ We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its
96
+ multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics
97
+ for the existing languages.
98
+
99
+ | Language | NDCG@10 |
100
+ |:---------|--------:|
101
+ | French | 0.401 |
102
+ | German | 0.396 |
103
+ | Spanish | 0.453 |
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "transformers_version": "4.23.1",
20
+ "type_vocab_size": 2,
21
+ "use_cache": true,
22
+ "vocab_size": 50099
23
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b2a4cf81d5d0b8f1887e459fd1380aa6b534cf482dc66c9c2c84cc38dff77c8
3
+ size 498143853
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff