File size: 10,645 Bytes
ce2cf9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: best_model-sst-2-64-87
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# best_model-sst-2-64-87

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2746
- Accuracy: 0.8438

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 4    | 1.3247          | 0.8438   |
| No log        | 2.0   | 8    | 1.3227          | 0.8438   |
| 0.7148        | 3.0   | 12   | 1.3195          | 0.8438   |
| 0.7148        | 4.0   | 16   | 1.3169          | 0.8359   |
| 0.6114        | 5.0   | 20   | 1.3149          | 0.8359   |
| 0.6114        | 6.0   | 24   | 1.3101          | 0.8359   |
| 0.6114        | 7.0   | 28   | 1.2982          | 0.8438   |
| 0.5794        | 8.0   | 32   | 1.2836          | 0.8438   |
| 0.5794        | 9.0   | 36   | 1.2655          | 0.8438   |
| 0.5231        | 10.0  | 40   | 1.2497          | 0.8438   |
| 0.5231        | 11.0  | 44   | 1.2410          | 0.8438   |
| 0.5231        | 12.0  | 48   | 1.2307          | 0.8438   |
| 0.4052        | 13.0  | 52   | 1.2154          | 0.8438   |
| 0.4052        | 14.0  | 56   | 1.2001          | 0.8438   |
| 0.363         | 15.0  | 60   | 1.1877          | 0.8438   |
| 0.363         | 16.0  | 64   | 1.1760          | 0.8516   |
| 0.363         | 17.0  | 68   | 1.1836          | 0.8516   |
| 0.2969        | 18.0  | 72   | 1.1848          | 0.8594   |
| 0.2969        | 19.0  | 76   | 1.1823          | 0.8516   |
| 0.1866        | 20.0  | 80   | 1.1867          | 0.8516   |
| 0.1866        | 21.0  | 84   | 1.1795          | 0.8516   |
| 0.1866        | 22.0  | 88   | 1.1756          | 0.8516   |
| 0.1502        | 23.0  | 92   | 1.1731          | 0.8516   |
| 0.1502        | 24.0  | 96   | 1.1680          | 0.8516   |
| 0.0974        | 25.0  | 100  | 1.1489          | 0.8516   |
| 0.0974        | 26.0  | 104  | 1.1088          | 0.8516   |
| 0.0974        | 27.0  | 108  | 1.0986          | 0.8594   |
| 0.0992        | 28.0  | 112  | 1.0879          | 0.8594   |
| 0.0992        | 29.0  | 116  | 1.0850          | 0.8594   |
| 0.0065        | 30.0  | 120  | 1.1056          | 0.8594   |
| 0.0065        | 31.0  | 124  | 1.1355          | 0.8516   |
| 0.0065        | 32.0  | 128  | 1.1457          | 0.8438   |
| 0.0185        | 33.0  | 132  | 1.1518          | 0.8438   |
| 0.0185        | 34.0  | 136  | 1.1437          | 0.8438   |
| 0.0123        | 35.0  | 140  | 1.1230          | 0.8516   |
| 0.0123        | 36.0  | 144  | 1.1109          | 0.8516   |
| 0.0123        | 37.0  | 148  | 1.1093          | 0.8594   |
| 0.0001        | 38.0  | 152  | 1.1085          | 0.8594   |
| 0.0001        | 39.0  | 156  | 1.1092          | 0.8594   |
| 0.008         | 40.0  | 160  | 1.1163          | 0.8594   |
| 0.008         | 41.0  | 164  | 1.1272          | 0.8516   |
| 0.008         | 42.0  | 168  | 1.1351          | 0.8516   |
| 0.0001        | 43.0  | 172  | 1.1365          | 0.8516   |
| 0.0001        | 44.0  | 176  | 1.1287          | 0.8516   |
| 0.0007        | 45.0  | 180  | 1.1195          | 0.8594   |
| 0.0007        | 46.0  | 184  | 1.1110          | 0.8594   |
| 0.0007        | 47.0  | 188  | 1.1261          | 0.8594   |
| 0.0003        | 48.0  | 192  | 1.1236          | 0.8594   |
| 0.0003        | 49.0  | 196  | 1.1083          | 0.8594   |
| 0.0018        | 50.0  | 200  | 1.1057          | 0.8594   |
| 0.0018        | 51.0  | 204  | 1.1077          | 0.8594   |
| 0.0018        | 52.0  | 208  | 1.1095          | 0.8516   |
| 0.0001        | 53.0  | 212  | 1.1116          | 0.8594   |
| 0.0001        | 54.0  | 216  | 1.1149          | 0.8594   |
| 0.0017        | 55.0  | 220  | 1.1500          | 0.8516   |
| 0.0017        | 56.0  | 224  | 1.1396          | 0.8516   |
| 0.0017        | 57.0  | 228  | 1.1474          | 0.8516   |
| 0.0002        | 58.0  | 232  | 1.1402          | 0.8594   |
| 0.0002        | 59.0  | 236  | 1.1367          | 0.8594   |
| 0.0001        | 60.0  | 240  | 1.1349          | 0.8516   |
| 0.0001        | 61.0  | 244  | 1.1350          | 0.8516   |
| 0.0001        | 62.0  | 248  | 1.1366          | 0.8516   |
| 0.0001        | 63.0  | 252  | 1.1389          | 0.8594   |
| 0.0001        | 64.0  | 256  | 1.1395          | 0.8594   |
| 0.0001        | 65.0  | 260  | 1.1380          | 0.8594   |
| 0.0001        | 66.0  | 264  | 1.1378          | 0.8594   |
| 0.0001        | 67.0  | 268  | 1.1411          | 0.8594   |
| 0.0001        | 68.0  | 272  | 1.1439          | 0.8594   |
| 0.0001        | 69.0  | 276  | 1.1452          | 0.8594   |
| 0.0122        | 70.0  | 280  | 1.1270          | 0.8594   |
| 0.0122        | 71.0  | 284  | 1.1514          | 0.8594   |
| 0.0122        | 72.0  | 288  | 1.1908          | 0.8516   |
| 0.0001        | 73.0  | 292  | 1.2155          | 0.8516   |
| 0.0001        | 74.0  | 296  | 1.2281          | 0.8516   |
| 0.0001        | 75.0  | 300  | 1.2353          | 0.8516   |
| 0.0001        | 76.0  | 304  | 1.2387          | 0.8516   |
| 0.0001        | 77.0  | 308  | 1.2380          | 0.8516   |
| 0.0177        | 78.0  | 312  | 1.1050          | 0.8594   |
| 0.0177        | 79.0  | 316  | 1.1201          | 0.8594   |
| 0.0123        | 80.0  | 320  | 1.1227          | 0.8516   |
| 0.0123        | 81.0  | 324  | 1.1249          | 0.8594   |
| 0.0123        | 82.0  | 328  | 1.1305          | 0.8594   |
| 0.0001        | 83.0  | 332  | 1.1371          | 0.8672   |
| 0.0001        | 84.0  | 336  | 1.1424          | 0.8672   |
| 0.0001        | 85.0  | 340  | 1.1449          | 0.8672   |
| 0.0001        | 86.0  | 344  | 1.1464          | 0.8672   |
| 0.0001        | 87.0  | 348  | 1.1469          | 0.8672   |
| 0.0001        | 88.0  | 352  | 1.1448          | 0.8594   |
| 0.0001        | 89.0  | 356  | 1.1444          | 0.8594   |
| 0.0           | 90.0  | 360  | 1.1452          | 0.8594   |
| 0.0           | 91.0  | 364  | 1.1464          | 0.8594   |
| 0.0           | 92.0  | 368  | 1.1484          | 0.8594   |
| 0.0001        | 93.0  | 372  | 1.1504          | 0.8594   |
| 0.0001        | 94.0  | 376  | 1.1521          | 0.8516   |
| 0.0           | 95.0  | 380  | 1.1537          | 0.8516   |
| 0.0           | 96.0  | 384  | 1.1553          | 0.8516   |
| 0.0           | 97.0  | 388  | 1.1571          | 0.8516   |
| 0.0001        | 98.0  | 392  | 1.1605          | 0.8594   |
| 0.0001        | 99.0  | 396  | 1.1645          | 0.8594   |
| 0.0           | 100.0 | 400  | 1.1678          | 0.8594   |
| 0.0           | 101.0 | 404  | 1.1706          | 0.8594   |
| 0.0           | 102.0 | 408  | 1.1729          | 0.8594   |
| 0.0           | 103.0 | 412  | 1.1747          | 0.8594   |
| 0.0           | 104.0 | 416  | 1.1762          | 0.8594   |
| 0.0001        | 105.0 | 420  | 1.1777          | 0.8594   |
| 0.0001        | 106.0 | 424  | 1.1792          | 0.8594   |
| 0.0001        | 107.0 | 428  | 1.1808          | 0.8594   |
| 0.0034        | 108.0 | 432  | 1.2561          | 0.8516   |
| 0.0034        | 109.0 | 436  | 1.3098          | 0.8516   |
| 0.0063        | 110.0 | 440  | 1.2197          | 0.8516   |
| 0.0063        | 111.0 | 444  | 1.1982          | 0.8516   |
| 0.0063        | 112.0 | 448  | 1.2230          | 0.8516   |
| 0.0           | 113.0 | 452  | 1.2172          | 0.8594   |
| 0.0           | 114.0 | 456  | 1.2165          | 0.8516   |
| 0.0           | 115.0 | 460  | 1.2187          | 0.8516   |
| 0.0           | 116.0 | 464  | 1.2213          | 0.8516   |
| 0.0           | 117.0 | 468  | 1.2234          | 0.8516   |
| 0.0           | 118.0 | 472  | 1.2248          | 0.8516   |
| 0.0           | 119.0 | 476  | 1.2267          | 0.8516   |
| 0.0           | 120.0 | 480  | 1.2288          | 0.8594   |
| 0.0           | 121.0 | 484  | 1.2316          | 0.8594   |
| 0.0           | 122.0 | 488  | 1.2342          | 0.8594   |
| 0.0           | 123.0 | 492  | 1.2364          | 0.8594   |
| 0.0           | 124.0 | 496  | 1.2436          | 0.8594   |
| 0.001         | 125.0 | 500  | 1.2770          | 0.8438   |
| 0.001         | 126.0 | 504  | 1.3138          | 0.8594   |
| 0.001         | 127.0 | 508  | 1.3084          | 0.8594   |
| 0.0           | 128.0 | 512  | 1.3102          | 0.8438   |
| 0.0           | 129.0 | 516  | 1.3333          | 0.8438   |
| 0.0002        | 130.0 | 520  | 1.3251          | 0.8516   |
| 0.0002        | 131.0 | 524  | 1.2928          | 0.8594   |
| 0.0002        | 132.0 | 528  | 1.2468          | 0.8438   |
| 0.0           | 133.0 | 532  | 1.2295          | 0.8438   |
| 0.0           | 134.0 | 536  | 1.2483          | 0.8438   |
| 0.0           | 135.0 | 540  | 1.2652          | 0.8438   |
| 0.0           | 136.0 | 544  | 1.2741          | 0.8438   |
| 0.0           | 137.0 | 548  | 1.2786          | 0.8438   |
| 0.0           | 138.0 | 552  | 1.2811          | 0.8438   |
| 0.0           | 139.0 | 556  | 1.2824          | 0.8438   |
| 0.0           | 140.0 | 560  | 1.2833          | 0.8438   |
| 0.0           | 141.0 | 564  | 1.2837          | 0.8438   |
| 0.0           | 142.0 | 568  | 1.2833          | 0.8438   |
| 0.0           | 143.0 | 572  | 1.2830          | 0.8438   |
| 0.0           | 144.0 | 576  | 1.2828          | 0.8438   |
| 0.0           | 145.0 | 580  | 1.2827          | 0.8438   |
| 0.0           | 146.0 | 584  | 1.2827          | 0.8438   |
| 0.0           | 147.0 | 588  | 1.2827          | 0.8438   |
| 0.0001        | 148.0 | 592  | 1.2786          | 0.8438   |
| 0.0001        | 149.0 | 596  | 1.2755          | 0.8438   |
| 0.0           | 150.0 | 600  | 1.2746          | 0.8438   |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3