File size: 4,358 Bytes
6e1d511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: exp2-led-risalah_data_v6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/silmiaulia/huggingface/runs/7pt54hkh)
# exp2-led-risalah_data_v6
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7971
- Rouge1: 35.2105
- Rouge2: 14.2825
- Rougel: 18.7356
- Rougelsum: 33.8518
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 3.6579 | 1.0 | 20 | 2.9715 | 15.0902 | 2.4602 | 8.8016 | 14.54 |
| 3.8322 | 2.0 | 40 | 2.6400 | 19.8395 | 3.3421 | 10.0041 | 18.8629 |
| 3.3928 | 3.0 | 60 | 2.4780 | 24.1438 | 4.9177 | 11.8553 | 23.0439 |
| 3.1159 | 4.0 | 80 | 2.3336 | 26.1339 | 5.4015 | 12.1066 | 24.5407 |
| 2.8469 | 5.0 | 100 | 2.2554 | 25.3388 | 5.6665 | 12.0706 | 24.1799 |
| 2.6486 | 6.0 | 120 | 2.1842 | 33.8164 | 9.2363 | 15.7673 | 31.606 |
| 2.5429 | 7.0 | 140 | 2.1322 | 32.5361 | 8.5141 | 15.3201 | 30.935 |
| 2.3159 | 8.0 | 160 | 2.0631 | 32.3657 | 9.171 | 15.1179 | 30.9634 |
| 2.1821 | 10.0 | 200 | 1.9358 | 33.1626 | 10.8072 | 16.5887 | 31.0652 |
| 2.2141 | 11.0 | 220 | 1.9274 | 36.3525 | 13.5885 | 18.4941 | 34.9263 |
| 2.1213 | 12.0 | 240 | 1.9033 | 34.4359 | 11.4335 | 17.8322 | 32.5781 |
| 1.9791 | 13.0 | 260 | 1.8914 | 37.0733 | 14.2739 | 18.9338 | 35.5985 |
| 1.9504 | 14.0 | 280 | 1.8642 | 34.7529 | 13.0325 | 18.1055 | 33.257 |
| 1.9848 | 15.0 | 300 | 1.8641 | 35.9266 | 13.4528 | 18.459 | 34.0294 |
| 1.845 | 16.0 | 320 | 1.8507 | 37.7424 | 15.2488 | 18.993 | 35.4955 |
| 1.8049 | 17.0 | 340 | 1.8390 | 36.5023 | 13.6069 | 18.4956 | 34.883 |
| 1.8158 | 18.0 | 360 | 1.8393 | 34.4722 | 13.6438 | 18.1636 | 32.4511 |
| 1.8541 | 19.0 | 380 | 1.8395 | 37.0215 | 14.3221 | 19.6743 | 35.3083 |
| 1.7967 | 20.0 | 400 | 1.8403 | 36.3048 | 13.3475 | 19.9887 | 34.6884 |
| 1.7285 | 21.0 | 420 | 1.8394 | 36.4051 | 14.3198 | 19.4997 | 34.9803 |
| 1.7303 | 22.0 | 440 | 1.8287 | 36.1003 | 14.166 | 17.8619 | 34.3505 |
| 1.6976 | 23.0 | 460 | 1.8040 | 34.3036 | 12.8173 | 18.6643 | 32.6019 |
| 1.6916 | 24.0 | 480 | 1.7963 | 34.7753 | 14.0332 | 18.923 | 33.3743 |
| 1.6872 | 25.0 | 500 | 1.8073 | 37.0718 | 14.6821 | 20.1188 | 35.7824 |
| 1.6979 | 26.0 | 520 | 1.8340 | 37.1726 | 15.1384 | 20.2153 | 36.3188 |
| 1.6867 | 27.0 | 540 | 1.8000 | 37.2831 | 14.2806 | 19.1448 | 36.1598 |
| 1.6959 | 28.0 | 560 | 1.7886 | 34.8414 | 13.5902 | 18.5803 | 33.5383 |
| 1.7546 | 29.0 | 580 | 1.8068 | 37.6551 | 16.1055 | 20.2492 | 36.1177 |
| 1.632 | 30.0 | 600 | 1.7971 | 35.2105 | 14.2825 | 18.7356 | 33.8518 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|