File size: 17,402 Bytes
06bd202 35ede35 06bd202 35ede35 06bd202 35ede35 06bd202 35ede35 06bd202 35ede35 dbd63b2 35ede35 dbd63b2 35ede35 dbd63b2 35ede35 06bd202 a61a78e 35ede35 06bd202 35ede35 06bd202 35ede35 06bd202 35ede35 06bd202 35ede35 06bd202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
---
base_model: silma-ai/silma-embeddding-matryoshka-0.1
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
model-index:
- name: SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8509127994264242
name: Pearson Cosine
- type: spearman_cosine
value: 0.8548500966032416
name: Spearman Cosine
- type: pearson_manhattan
value: 0.821303728669975
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8364598068079891
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8210450198328316
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8382181658285147
name: Spearman Euclidean
- type: pearson_dot
value: 0.8491261828772604
name: Pearson Dot
- type: spearman_dot
value: 0.8559811107036664
name: Spearman Dot
- type: pearson_max
value: 0.8509127994264242
name: Pearson Max
- type: spearman_max
value: 0.8559811107036664
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.8498025312190702
name: Pearson Cosine
- type: spearman_cosine
value: 0.8530609768738506
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8181745876468085
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8328727236454085
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8193792688284338
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8338632184708783
name: Spearman Euclidean
- type: pearson_dot
value: 0.8396368156921546
name: Pearson Dot
- type: spearman_dot
value: 0.8484397673758116
name: Spearman Dot
- type: pearson_max
value: 0.8498025312190702
name: Pearson Max
- type: spearman_max
value: 0.8530609768738506
name: Spearman Max
license: apache-2.0
language:
- ar
- en
---
# SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [silma-ai/silma-embeddding-matryoshka-0.1](https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then load the model
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")
```
### Samples
#### [+] Short Sentence Similarity
**Arabic**
```python
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.42602288722991943
# sentence_2_similarity: 0.10798501968383789
# =======
```
**English**
```python
query = "The weather is sunny today"
sentence_1 = "The morning was bright and sunny"
sentence_2 = "it is too cloudy today"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5796191692352295
# sentence_2_similarity: 0.21948376297950745
# =======
```
#### [+] Long Sentence Similarity
**Arabic**
```python
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5725120306015015
# sentence_2_similarity: 0.22617210447788239
# =======
```
**English**
```python
query = "China said on Saturday it would issue special bonds to help its sputtering economy, signalling a spending spree to bolster banks"
sentence_1 = "The Chinese government announced plans to release special bonds aimed at supporting its struggling economy and stabilizing the banking sector."
sentence_2 = "Several countries are preparing for a global technology summit to discuss advancements in bolster global banks."
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6438770294189453
# sentence_2_similarity: 0.4720292389392853
# =======
```
#### [+] Question to Paragraph Matching
**Arabic**
```python
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6058318614959717
# sentence_2_similarity: 0.006831036880612373
# =======
```
**English**
```python
query = "What are the benefits of exercising?"
sentence_1 = "Regular exercise helps improve overall health and physical fitness"
sentence_2 = "Teaching children at an early age helps them develop cognitive skills quickly"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.3593001365661621
# sentence_2_similarity: 0.06493218243122101
# =======
```
#### [+] Message to Intent-Name Mapping
**Arabic**
```python
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.4646468162536621
# sentence_2_similarity: 0.19563665986061096
# =======
```
**English**
```python
query = "Please send an email to all of the managers"
sentence_1 = "send email"
sentence_2 = "read inbox emails"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6485046744346619
# sentence_2_similarity: 0.43906497955322266
# =======
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8509 |
| **spearman_cosine** | **0.8549** |
| pearson_manhattan | 0.8213 |
| spearman_manhattan | 0.8365 |
| pearson_euclidean | 0.821 |
| spearman_euclidean | 0.8382 |
| pearson_dot | 0.8491 |
| spearman_dot | 0.856 |
| pearson_max | 0.8509 |
| spearman_max | 0.856 |
#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8498 |
| **spearman_cosine** | **0.8531** |
| pearson_manhattan | 0.8182 |
| spearman_manhattan | 0.8329 |
| pearson_euclidean | 0.8194 |
| spearman_euclidean | 0.8339 |
| pearson_dot | 0.8396 |
| spearman_dot | 0.8484 |
| pearson_max | 0.8498 |
| spearman_max | 0.8531 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
This model was fine-tuned via 2 phases:
### Phase 1:
In phase `1`, we curated a dataset [silma-ai/silma-arabic-triplets-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-triplets-dataset-v1.0) which
contains more than `2.25M` records of (anchor, positive and negative) Arabic/English samples.
Only the first `600` samples were taken to be the `eval` dataset, while the rest was used for fine-tuning.
Phase `1` produces a finetuned `Matryoshka` model based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) with the following hyperparameters:
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-05
- `num_train_epochs`: 3
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
**[trainin-example](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/matryoshka/matryoshka_sts.py)**
### Phase 2:
In phase `2`, we curated a dataset [silma-ai/silma-arabic-english-sts-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0) which
contains more than `30k` records of (sentence1, sentence2 and similarity-score) Arabic/English samples.
Only the first `100` samples were taken to be the `eval` dataset, while the rest was used for fine-tuning.
Phase `1` produces a finetuned `STS` model based on the model from phase `1`, with the following hyperparameters:
- `eval_strategy`: steps
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-06
- `num_train_epochs`: 10
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
**[trainin-example](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py)**
</details>
### Training Logs (Phase 2)
| Epoch | Step | Training Loss | Validation Loss | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|
| 0.3650 | 50 | 0.0395 | 0.0424 | 0.8486 | 0.8487 |
| 0.7299 | 100 | 0.031 | 0.0427 | 0.8493 | 0.8495 |
| 1.0949 | 150 | 0.0344 | 0.0430 | 0.8496 | 0.8496 |
| 1.4599 | 200 | 0.0313 | 0.0427 | 0.8506 | 0.8504 |
| 1.8248 | 250 | 0.0267 | 0.0428 | 0.8504 | 0.8506 |
| 2.1898 | 300 | 0.0309 | 0.0429 | 0.8516 | 0.8515 |
| 2.5547 | 350 | 0.0276 | 0.0425 | 0.8531 | 0.8521 |
| 2.9197 | 400 | 0.028 | 0.0426 | 0.8530 | 0.8515 |
| 3.2847 | 450 | 0.0281 | 0.0425 | 0.8539 | 0.8521 |
| 3.6496 | 500 | 0.0248 | 0.0425 | 0.8542 | 0.8523 |
| 4.0146 | 550 | 0.0302 | 0.0424 | 0.8541 | 0.8520 |
| 4.3796 | 600 | 0.0261 | 0.0421 | 0.8545 | 0.8523 |
| 4.7445 | 650 | 0.0233 | 0.0420 | 0.8544 | 0.8522 |
| 5.1095 | 700 | 0.0281 | 0.0419 | 0.8547 | 0.8528 |
| 5.4745 | 750 | 0.0257 | 0.0419 | 0.8546 | 0.8531 |
| 5.8394 | 800 | 0.0235 | 0.0418 | 0.8546 | 0.8527 |
| 6.2044 | 850 | 0.0268 | 0.0418 | 0.8551 | 0.8529 |
| 6.5693 | 900 | 0.0238 | 0.0416 | 0.8552 | 0.8526 |
| 6.9343 | 950 | 0.0255 | 0.0416 | 0.8549 | 0.8526 |
| 7.2993 | 1000 | 0.0253 | 0.0416 | 0.8548 | 0.8528 |
| 7.6642 | 1050 | 0.0225 | 0.0415 | 0.8550 | 0.8525 |
| 8.0292 | 1100 | 0.0276 | 0.0414 | 0.8550 | 0.8528 |
| 8.3942 | 1150 | 0.0244 | 0.0415 | 0.8550 | 0.8533 |
| 8.7591 | 1200 | 0.0218 | 0.0414 | 0.8551 | 0.8529 |
| 9.1241 | 1250 | 0.0263 | 0.0414 | 0.8550 | 0.8531 |
| 9.4891 | 1300 | 0.0241 | 0.0414 | 0.8552 | 0.8533 |
| 9.8540 | 1350 | 0.0227 | 0.0415 | 0.8549 | 0.8531 |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |