File size: 17,402 Bytes
06bd202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35ede35
 
 
 
06bd202
 
 
 
 
 
 
 
 
 
35ede35
06bd202
 
 
 
 
 
 
 
 
 
 
 
 
 
35ede35
 
06bd202
 
35ede35
06bd202
 
35ede35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd63b2
35ede35
dbd63b2
35ede35
 
 
 
 
 
 
 
 
dbd63b2
 
35ede35
 
06bd202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a61a78e
35ede35
 
 
 
 
 
 
 
06bd202
 
 
35ede35
 
06bd202
 
 
 
 
35ede35
 
 
 
 
 
 
 
 
 
06bd202
 
 
 
 
 
 
 
 
 
35ede35
 
 
06bd202
 
 
35ede35
06bd202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
---
base_model: silma-ai/silma-embeddding-matryoshka-0.1
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
model-index:
- name: SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.8509127994264242
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8548500966032416
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.821303728669975
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8364598068079891
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8210450198328316
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8382181658285147
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8491261828772604
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8559811107036664
      name: Spearman Dot
    - type: pearson_max
      value: 0.8509127994264242
      name: Pearson Max
    - type: spearman_max
      value: 0.8559811107036664
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.8498025312190702
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8530609768738506
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8181745876468085
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8328727236454085
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8193792688284338
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8338632184708783
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8396368156921546
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8484397673758116
      name: Spearman Dot
    - type: pearson_max
      value: 0.8498025312190702
      name: Pearson Max
    - type: spearman_max
      value: 0.8530609768738506
      name: Spearman Max
license: apache-2.0
language:
- ar
- en
---

# SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [silma-ai/silma-embeddding-matryoshka-0.1](https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then load the model

```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")
```

### Samples

#### [+] Short Sentence Similarity

**Arabic**
```python
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.42602288722991943
# sentence_2_similarity: 0.10798501968383789
# =======
```

**English**
```python
query = "The weather is sunny today"
sentence_1 = "The morning was bright and sunny"
sentence_2 = "it is too cloudy today"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.5796191692352295
# sentence_2_similarity: 0.21948376297950745
# =======
```

#### [+] Long Sentence Similarity

**Arabic**
```python
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.5725120306015015
# sentence_2_similarity: 0.22617210447788239
# =======
```

**English**
```python
query = "China said on Saturday it would issue special bonds to help its sputtering economy, signalling a spending spree to bolster banks"
sentence_1 = "The Chinese government announced plans to release special bonds aimed at supporting its struggling economy and stabilizing the banking sector."
sentence_2 = "Several countries are preparing for a global technology summit to discuss advancements in bolster global banks."

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.6438770294189453
# sentence_2_similarity: 0.4720292389392853
# =======
```

#### [+] Question to Paragraph Matching

**Arabic**
```python
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.6058318614959717
# sentence_2_similarity: 0.006831036880612373
# =======
```

**English**
```python
query = "What are the benefits of exercising?"
sentence_1 = "Regular exercise helps improve overall health and physical fitness"
sentence_2 = "Teaching children at an early age helps them develop cognitive skills quickly"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.3593001365661621
# sentence_2_similarity: 0.06493218243122101
# =======
```

#### [+] Message to Intent-Name Mapping

**Arabic**
```python
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.4646468162536621
# sentence_2_similarity: 0.19563665986061096
# =======
```

**English**
```python
query = "Please send an email to all of the managers"
sentence_1 = "send email"
sentence_2 = "read inbox emails"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.6485046744346619
# sentence_2_similarity: 0.43906497955322266
# =======

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8509     |
| **spearman_cosine** | **0.8549** |
| pearson_manhattan   | 0.8213     |
| spearman_manhattan  | 0.8365     |
| pearson_euclidean   | 0.821      |
| spearman_euclidean  | 0.8382     |
| pearson_dot         | 0.8491     |
| spearman_dot        | 0.856      |
| pearson_max         | 0.8509     |
| spearman_max        | 0.856      |

#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8498     |
| **spearman_cosine** | **0.8531** |
| pearson_manhattan   | 0.8182     |
| spearman_manhattan  | 0.8329     |
| pearson_euclidean   | 0.8194     |
| spearman_euclidean  | 0.8339     |
| pearson_dot         | 0.8396     |
| spearman_dot        | 0.8484     |
| pearson_max         | 0.8498     |
| spearman_max        | 0.8531     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

This model was fine-tuned via 2 phases:

### Phase 1:

In phase `1`, we curated a dataset [silma-ai/silma-arabic-triplets-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-triplets-dataset-v1.0) which
contains more than `2.25M` records of (anchor, positive and negative) Arabic/English samples. 
Only the first `600` samples were taken to be the `eval` dataset, while the rest was used for fine-tuning.

Phase `1` produces a finetuned `Matryoshka` model based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) with the following hyperparameters:

- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-05
- `num_train_epochs`: 3
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

**[trainin-example](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/matryoshka/matryoshka_sts.py)**


### Phase 2:

In phase `2`, we curated a dataset [silma-ai/silma-arabic-english-sts-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0) which
contains more than `30k` records of (sentence1, sentence2 and similarity-score) Arabic/English samples. 
Only the first `100` samples were taken to be the `eval` dataset, while the rest was used for fine-tuning. 

Phase `1` produces a finetuned `STS` model based on the model from phase `1`, with the following hyperparameters:

- `eval_strategy`: steps
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-06
- `num_train_epochs`: 10
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

**[trainin-example](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py)**


</details>

### Training Logs (Phase 2)
| Epoch  | Step | Training Loss | Validation Loss | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|
| 0.3650 | 50   | 0.0395        | 0.0424          | 0.8486                      | 0.8487                      |
| 0.7299 | 100  | 0.031         | 0.0427          | 0.8493                      | 0.8495                      |
| 1.0949 | 150  | 0.0344        | 0.0430          | 0.8496                      | 0.8496                      |
| 1.4599 | 200  | 0.0313        | 0.0427          | 0.8506                      | 0.8504                      |
| 1.8248 | 250  | 0.0267        | 0.0428          | 0.8504                      | 0.8506                      |
| 2.1898 | 300  | 0.0309        | 0.0429          | 0.8516                      | 0.8515                      |
| 2.5547 | 350  | 0.0276        | 0.0425          | 0.8531                      | 0.8521                      |
| 2.9197 | 400  | 0.028         | 0.0426          | 0.8530                      | 0.8515                      |
| 3.2847 | 450  | 0.0281        | 0.0425          | 0.8539                      | 0.8521                      |
| 3.6496 | 500  | 0.0248        | 0.0425          | 0.8542                      | 0.8523                      |
| 4.0146 | 550  | 0.0302        | 0.0424          | 0.8541                      | 0.8520                      |
| 4.3796 | 600  | 0.0261        | 0.0421          | 0.8545                      | 0.8523                      |
| 4.7445 | 650  | 0.0233        | 0.0420          | 0.8544                      | 0.8522                      |
| 5.1095 | 700  | 0.0281        | 0.0419          | 0.8547                      | 0.8528                      |
| 5.4745 | 750  | 0.0257        | 0.0419          | 0.8546                      | 0.8531                      |
| 5.8394 | 800  | 0.0235        | 0.0418          | 0.8546                      | 0.8527                      |
| 6.2044 | 850  | 0.0268        | 0.0418          | 0.8551                      | 0.8529                      |
| 6.5693 | 900  | 0.0238        | 0.0416          | 0.8552                      | 0.8526                      |
| 6.9343 | 950  | 0.0255        | 0.0416          | 0.8549                      | 0.8526                      |
| 7.2993 | 1000 | 0.0253        | 0.0416          | 0.8548                      | 0.8528                      |
| 7.6642 | 1050 | 0.0225        | 0.0415          | 0.8550                      | 0.8525                      |
| 8.0292 | 1100 | 0.0276        | 0.0414          | 0.8550                      | 0.8528                      |
| 8.3942 | 1150 | 0.0244        | 0.0415          | 0.8550                      | 0.8533                      |
| 8.7591 | 1200 | 0.0218        | 0.0414          | 0.8551                      | 0.8529                      |
| 9.1241 | 1250 | 0.0263        | 0.0414          | 0.8550                      | 0.8531                      |
| 9.4891 | 1300 | 0.0241        | 0.0414          | 0.8552                      | 0.8533                      |
| 9.8540 | 1350 | 0.0227        | 0.0415          | 0.8549                      | 0.8531                      |


### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->