File size: 8,010 Bytes
27d1ad8
607f59c
 
 
 
 
 
 
 
2834991
23ebd78
2834991
607f59c
fc1ccec
2834991
607f59c
27d1ad8
 
 
 
 
 
 
 
 
 
 
 
149527c
27d1ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607f59c
 
 
27d1ad8
 
607f59c
27d1ad8
5550242
689a7bb
cfe4502
2403bc7
27d1ad8
77bb51d
607f59c
edd4fd8
27d1ad8
607f59c
27d1ad8
cfe4502
27d1ad8
607f59c
0e3e096
 
cfe4502
27d1ad8
607f59c
48f9a72
607f59c
1e58c9b
 
 
27d1ad8
607f59c
 
 
27d1ad8
 
607f59c
27d1ad8
2e28741
b685dda
27d1ad8
80c5b7b
607f59c
c1d012f
 
 
80c5b7b
c1d012f
 
 
607f59c
2e28741
 
 
66dc4b6
c95c99c
2e28741
 
 
 
 
 
 
 
 
 
 
 
 
 
77bb51d
2e28741
27d1ad8
 
 
 
607f59c
27d1ad8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
---
license: apache-2.0
language: en
tags:
- deberta-v3-base
- text-classification
- nli
- natural-language-inference
- multitask
- multi-task
- pipeline
- extreme-multi-task
- extreme-mtl
- deberta-v3-base
- tasksource
pipeline_tag: zero-shot-classification
datasets:
- hellaswag
- ag_news
- pietrolesci/nli_fever
- numer_sense
- go_emotions
- Ericwang/promptProficiency
- poem_sentiment
- pietrolesci/robust_nli_is_sd
- sileod/probability_words_nli
- social_i_qa
- trec
- imppres
- pietrolesci/gen_debiased_nli
- snips_built_in_intents
- metaeval/imppres
- metaeval/crowdflower
- tals/vitaminc
- dream
- metaeval/babi_nli
- Ericwang/promptSpoke
- metaeval/ethics
- art
- ai2_arc
- discovery
- Ericwang/promptGrammar
- code_x_glue_cc_clone_detection_big_clone_bench
- prajjwal1/discosense
- pietrolesci/joci
- Anthropic/model-written-evals
- utilitarianism
- emo
- tweets_hate_speech_detection
- piqa
- blog_authorship_corpus
- SpeedOfMagic/ontonotes_english
- circa
- app_reviews
- anli
- Ericwang/promptSentiment
- codah
- definite_pronoun_resolution
- health_fact
- tweet_eval
- hate_speech18
- glue
- hendrycks_test
- paws
- bigbench
- hate_speech_offensive
- blimp
- sick
- turingbench/TuringBench
- martn-nguyen/contrast_nli
- Anthropic/hh-rlhf
- openbookqa
- species_800
- alisawuffles/WANLI
- ethos
- pietrolesci/mpe
- wiki_hop
- pietrolesci/glue_diagnostics
- mc_taco
- quarel
- PiC/phrase_similarity
- strombergnlp/rumoureval_2019
- quail
- acronym_identification
- pietrolesci/robust_nli
- quora
- wnut_17
- dynabench/dynasent
- pietrolesci/gpt3_nli
- truthful_qa
- pietrolesci/add_one_rte
- pietrolesci/breaking_nli
- copenlu/scientific-exaggeration-detection
- medical_questions_pairs
- rotten_tomatoes
- scicite
- scitail
- pietrolesci/dialogue_nli
- code_x_glue_cc_defect_detection
- nightingal3/fig-qa
- pietrolesci/conj_nli
- liar
- sciq
- head_qa
- pietrolesci/dnc
- quartz
- wiqa
- code_x_glue_cc_code_refinement
- Ericwang/promptCoherence
- joey234/nan-nli
- hope_edi
- jnlpba
- yelp_review_full
- pietrolesci/recast_white
- swag
- banking77
- cosmos_qa
- financial_phrasebank
- hans
- pietrolesci/fracas
- math_qa
- conll2003
- qasc
- ncbi_disease
- mwong/fever-evidence-related
- YaHi/EffectiveFeedbackStudentWriting
- ade_corpus_v2
- amazon_polarity
- pietrolesci/robust_nli_li_ts
- super_glue
- adv_glue
- Ericwang/promptNLI
- cos_e
- launch/open_question_type
- lex_glue
- has_part
- pragmeval
- sem_eval_2010_task_8
- imdb
- humicroedit
- sms_spam
- dbpedia_14
- commonsense_qa
- hlgd
- snli
- hyperpartisan_news_detection
- google_wellformed_query
- raquiba/Sarcasm_News_Headline
- metaeval/recast
- winogrande
- relbert/lexical_relation_classification
- metaeval/linguisticprobing
metrics:
- accuracy
library_name: transformers
---

# Model Card for DeBERTa-v3-base-tasksource-nli

DeBERTa-v3-base fine-tuned with multi-task learning on 444 tasks of the [tasksource collection](https://github.com/sileod/tasksource/)
You can further fine-tune this model to use it for any classification or multiple-choice task.
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI).
The untuned model CLS embedding also has strong linear probing performance (90% on MNLI), due to the multitask training.

This is the shared model with the MNLI classifier on top. Its encoder was trained on many datasets including bigbench, Anthropic rlhf, anli... alongside many NLI and classification tasks with a SequenceClassification heads while using only one shared encoder.
Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched.
The number of examples per task was capped to 64k. The model was trained for 20k steps with a batch size of 384, and a peak learning rate of 2e-5.

The list of tasks is available in tasks.md

tasksource training code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing

### Software
https://github.com/sileod/tasksource/ \
https://github.com/sileod/tasknet/ \
Training took 7 days on RTX6000 24GB gpu.

## Model Recycling
An earlier (weaker) version model is ranked 1st among all models with the microsoft/deberta-v3-base architecture as of 10/01/2023
Results:
[Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=1.41&mnli_lp=nan&20_newsgroup=0.63&ag_news=0.46&amazon_reviews_multi=-0.40&anli=0.94&boolq=2.55&cb=10.71&cola=0.49&copa=10.60&dbpedia=0.10&esnli=-0.25&financial_phrasebank=1.31&imdb=-0.17&isear=0.63&mnli=0.42&mrpc=-0.23&multirc=1.73&poem_sentiment=0.77&qnli=0.12&qqp=-0.05&rotten_tomatoes=0.67&rte=2.13&sst2=0.01&sst_5bins=-0.02&stsb=1.39&trec_coarse=0.24&trec_fine=0.18&tweet_ev_emoji=0.62&tweet_ev_emotion=0.43&tweet_ev_hate=1.84&tweet_ev_irony=1.43&tweet_ev_offensive=0.17&tweet_ev_sentiment=0.08&wic=-1.78&wnli=3.03&wsc=9.95&yahoo_answers=0.17&model_name=sileod%2Fdeberta-v3-base_tasksource-420&base_name=microsoft%2Fdeberta-v3-base) using sileod/deberta-v3-base_tasksource-420 as a base model yields average score of 80.45 in comparison to 79.04 by microsoft/deberta-v3-base.



|   20_newsgroup |   ag_news |   amazon_reviews_multi |    anli |   boolq |      cb |    cola |   copa |   dbpedia |   esnli |   financial_phrasebank |   imdb |   isear |    mnli |    mrpc |   multirc |   poem_sentiment |    qnli |     qqp |   rotten_tomatoes |     rte |    sst2 |   sst_5bins |    stsb |   trec_coarse |   trec_fine |   tweet_ev_emoji |   tweet_ev_emotion |   tweet_ev_hate |   tweet_ev_irony |   tweet_ev_offensive |   tweet_ev_sentiment |     wic |    wnli |     wsc |   yahoo_answers |
|---------------:|----------:|-----------------------:|--------:|--------:|--------:|--------:|-------:|----------:|--------:|-----------------------:|-------:|--------:|--------:|--------:|----------:|-----------------:|--------:|--------:|------------------:|--------:|--------:|------------:|--------:|--------------:|------------:|-----------------:|-------------------:|----------------:|-----------------:|---------------------:|---------------------:|--------:|--------:|--------:|----------------:|
|         87.042 |      90.9 |                  66.46 | 59.7188 | 85.5352 | 85.7143 | 87.0566 |     69 |   79.5333 | 91.6735 |                   85.8 | 94.324 | 72.4902 | 90.2055 | 88.9706 |   63.9851 |             87.5 | 93.6299 | 91.7363 |           91.0882 | 84.4765 | 95.0688 |     56.9683 | 91.6654 |            98 |        91.2 |           46.814 |            84.3772 |         58.0471 |            81.25 |              85.2326 |              71.8821 | 69.4357 | 73.2394 | 74.0385 |            72.2 |


For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)


# Citation

More details on this [article:](https://arxiv.org/abs/2301.05948) 
```bib
@article{sileo2023tasksource,
  title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation},
  author={Sileo, Damien},
  url= {https://arxiv.org/abs/2301.05948},
  journal={arXiv preprint arXiv:2301.05948},
  year={2023}
}
```

# Loading a specific classifier

Classifiers for all tasks available.
```python
from torch import nn

TASK_NAME = "hh-rlhf"

class MultiTask(transformers.DebertaV2ForMultipleChoice):
   def __init__(self, *args, **kwargs):
        super().__init__(*args)
        n=len(self.config.tasks)
        cs=self.config.classifiers_size
        self.Z = nn.Embedding(n,768)
        self.classifiers = nn.ModuleList([torch.nn.Linear(*size) for size in cs])

model = MultiTask.from_pretrained("sileod/deberta-v3-base-tasksource-nli",ignore_mismatched_sizes=True)
task_index = {k:v for v,k in dict(enumerate(model.config.tasks)).items()}[TASK_NAME]
model.classifier = model.classifiers[task_index] # model is ready for $TASK_NAME ! (RLHF) ! 
```


# Model Card Contact

[email protected]


</details>