File size: 8,010 Bytes
27d1ad8 607f59c 2834991 23ebd78 2834991 607f59c fc1ccec 2834991 607f59c 27d1ad8 149527c 27d1ad8 607f59c 27d1ad8 607f59c 27d1ad8 5550242 689a7bb cfe4502 2403bc7 27d1ad8 77bb51d 607f59c edd4fd8 27d1ad8 607f59c 27d1ad8 cfe4502 27d1ad8 607f59c 0e3e096 cfe4502 27d1ad8 607f59c 48f9a72 607f59c 1e58c9b 27d1ad8 607f59c 27d1ad8 607f59c 27d1ad8 2e28741 b685dda 27d1ad8 80c5b7b 607f59c c1d012f 80c5b7b c1d012f 607f59c 2e28741 66dc4b6 c95c99c 2e28741 77bb51d 2e28741 27d1ad8 607f59c 27d1ad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
license: apache-2.0
language: en
tags:
- deberta-v3-base
- text-classification
- nli
- natural-language-inference
- multitask
- multi-task
- pipeline
- extreme-multi-task
- extreme-mtl
- deberta-v3-base
- tasksource
pipeline_tag: zero-shot-classification
datasets:
- hellaswag
- ag_news
- pietrolesci/nli_fever
- numer_sense
- go_emotions
- Ericwang/promptProficiency
- poem_sentiment
- pietrolesci/robust_nli_is_sd
- sileod/probability_words_nli
- social_i_qa
- trec
- imppres
- pietrolesci/gen_debiased_nli
- snips_built_in_intents
- metaeval/imppres
- metaeval/crowdflower
- tals/vitaminc
- dream
- metaeval/babi_nli
- Ericwang/promptSpoke
- metaeval/ethics
- art
- ai2_arc
- discovery
- Ericwang/promptGrammar
- code_x_glue_cc_clone_detection_big_clone_bench
- prajjwal1/discosense
- pietrolesci/joci
- Anthropic/model-written-evals
- utilitarianism
- emo
- tweets_hate_speech_detection
- piqa
- blog_authorship_corpus
- SpeedOfMagic/ontonotes_english
- circa
- app_reviews
- anli
- Ericwang/promptSentiment
- codah
- definite_pronoun_resolution
- health_fact
- tweet_eval
- hate_speech18
- glue
- hendrycks_test
- paws
- bigbench
- hate_speech_offensive
- blimp
- sick
- turingbench/TuringBench
- martn-nguyen/contrast_nli
- Anthropic/hh-rlhf
- openbookqa
- species_800
- alisawuffles/WANLI
- ethos
- pietrolesci/mpe
- wiki_hop
- pietrolesci/glue_diagnostics
- mc_taco
- quarel
- PiC/phrase_similarity
- strombergnlp/rumoureval_2019
- quail
- acronym_identification
- pietrolesci/robust_nli
- quora
- wnut_17
- dynabench/dynasent
- pietrolesci/gpt3_nli
- truthful_qa
- pietrolesci/add_one_rte
- pietrolesci/breaking_nli
- copenlu/scientific-exaggeration-detection
- medical_questions_pairs
- rotten_tomatoes
- scicite
- scitail
- pietrolesci/dialogue_nli
- code_x_glue_cc_defect_detection
- nightingal3/fig-qa
- pietrolesci/conj_nli
- liar
- sciq
- head_qa
- pietrolesci/dnc
- quartz
- wiqa
- code_x_glue_cc_code_refinement
- Ericwang/promptCoherence
- joey234/nan-nli
- hope_edi
- jnlpba
- yelp_review_full
- pietrolesci/recast_white
- swag
- banking77
- cosmos_qa
- financial_phrasebank
- hans
- pietrolesci/fracas
- math_qa
- conll2003
- qasc
- ncbi_disease
- mwong/fever-evidence-related
- YaHi/EffectiveFeedbackStudentWriting
- ade_corpus_v2
- amazon_polarity
- pietrolesci/robust_nli_li_ts
- super_glue
- adv_glue
- Ericwang/promptNLI
- cos_e
- launch/open_question_type
- lex_glue
- has_part
- pragmeval
- sem_eval_2010_task_8
- imdb
- humicroedit
- sms_spam
- dbpedia_14
- commonsense_qa
- hlgd
- snli
- hyperpartisan_news_detection
- google_wellformed_query
- raquiba/Sarcasm_News_Headline
- metaeval/recast
- winogrande
- relbert/lexical_relation_classification
- metaeval/linguisticprobing
metrics:
- accuracy
library_name: transformers
---
# Model Card for DeBERTa-v3-base-tasksource-nli
DeBERTa-v3-base fine-tuned with multi-task learning on 444 tasks of the [tasksource collection](https://github.com/sileod/tasksource/)
You can further fine-tune this model to use it for any classification or multiple-choice task.
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI).
The untuned model CLS embedding also has strong linear probing performance (90% on MNLI), due to the multitask training.
This is the shared model with the MNLI classifier on top. Its encoder was trained on many datasets including bigbench, Anthropic rlhf, anli... alongside many NLI and classification tasks with a SequenceClassification heads while using only one shared encoder.
Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched.
The number of examples per task was capped to 64k. The model was trained for 20k steps with a batch size of 384, and a peak learning rate of 2e-5.
The list of tasks is available in tasks.md
tasksource training code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing
### Software
https://github.com/sileod/tasksource/ \
https://github.com/sileod/tasknet/ \
Training took 7 days on RTX6000 24GB gpu.
## Model Recycling
An earlier (weaker) version model is ranked 1st among all models with the microsoft/deberta-v3-base architecture as of 10/01/2023
Results:
[Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=1.41&mnli_lp=nan&20_newsgroup=0.63&ag_news=0.46&amazon_reviews_multi=-0.40&anli=0.94&boolq=2.55&cb=10.71&cola=0.49&copa=10.60&dbpedia=0.10&esnli=-0.25&financial_phrasebank=1.31&imdb=-0.17&isear=0.63&mnli=0.42&mrpc=-0.23&multirc=1.73&poem_sentiment=0.77&qnli=0.12&qqp=-0.05&rotten_tomatoes=0.67&rte=2.13&sst2=0.01&sst_5bins=-0.02&stsb=1.39&trec_coarse=0.24&trec_fine=0.18&tweet_ev_emoji=0.62&tweet_ev_emotion=0.43&tweet_ev_hate=1.84&tweet_ev_irony=1.43&tweet_ev_offensive=0.17&tweet_ev_sentiment=0.08&wic=-1.78&wnli=3.03&wsc=9.95&yahoo_answers=0.17&model_name=sileod%2Fdeberta-v3-base_tasksource-420&base_name=microsoft%2Fdeberta-v3-base) using sileod/deberta-v3-base_tasksource-420 as a base model yields average score of 80.45 in comparison to 79.04 by microsoft/deberta-v3-base.
| 20_newsgroup | ag_news | amazon_reviews_multi | anli | boolq | cb | cola | copa | dbpedia | esnli | financial_phrasebank | imdb | isear | mnli | mrpc | multirc | poem_sentiment | qnli | qqp | rotten_tomatoes | rte | sst2 | sst_5bins | stsb | trec_coarse | trec_fine | tweet_ev_emoji | tweet_ev_emotion | tweet_ev_hate | tweet_ev_irony | tweet_ev_offensive | tweet_ev_sentiment | wic | wnli | wsc | yahoo_answers |
|---------------:|----------:|-----------------------:|--------:|--------:|--------:|--------:|-------:|----------:|--------:|-----------------------:|-------:|--------:|--------:|--------:|----------:|-----------------:|--------:|--------:|------------------:|--------:|--------:|------------:|--------:|--------------:|------------:|-----------------:|-------------------:|----------------:|-----------------:|---------------------:|---------------------:|--------:|--------:|--------:|----------------:|
| 87.042 | 90.9 | 66.46 | 59.7188 | 85.5352 | 85.7143 | 87.0566 | 69 | 79.5333 | 91.6735 | 85.8 | 94.324 | 72.4902 | 90.2055 | 88.9706 | 63.9851 | 87.5 | 93.6299 | 91.7363 | 91.0882 | 84.4765 | 95.0688 | 56.9683 | 91.6654 | 98 | 91.2 | 46.814 | 84.3772 | 58.0471 | 81.25 | 85.2326 | 71.8821 | 69.4357 | 73.2394 | 74.0385 | 72.2 |
For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)
# Citation
More details on this [article:](https://arxiv.org/abs/2301.05948)
```bib
@article{sileo2023tasksource,
title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation},
author={Sileo, Damien},
url= {https://arxiv.org/abs/2301.05948},
journal={arXiv preprint arXiv:2301.05948},
year={2023}
}
```
# Loading a specific classifier
Classifiers for all tasks available.
```python
from torch import nn
TASK_NAME = "hh-rlhf"
class MultiTask(transformers.DebertaV2ForMultipleChoice):
def __init__(self, *args, **kwargs):
super().__init__(*args)
n=len(self.config.tasks)
cs=self.config.classifiers_size
self.Z = nn.Embedding(n,768)
self.classifiers = nn.ModuleList([torch.nn.Linear(*size) for size in cs])
model = MultiTask.from_pretrained("sileod/deberta-v3-base-tasksource-nli",ignore_mismatched_sizes=True)
task_index = {k:v for v,k in dict(enumerate(model.config.tasks)).items()}[TASK_NAME]
model.classifier = model.classifiers[task_index] # model is ready for $TASK_NAME ! (RLHF) !
```
# Model Card Contact
[email protected]
</details> |