File size: 10,153 Bytes
27d1ad8 607f59c 35495a6 607f59c 2834991 23ebd78 2834991 607f59c 2834991 aaef5d8 d83dede a8b808d 598fe03 1a78494 598fe03 1a78494 598fe03 27d1ad8 b8d479c c445f29 27d1ad8 b8d479c 0a0af02 b8d479c 6a98d90 27d1ad8 b8d479c 27d1ad8 b8d479c 27d1ad8 b8d479c 27d1ad8 b8d479c 1e32dd5 b8d479c 27d1ad8 b8d479c 6a7865d b8d479c 27d1ad8 b8d479c 27d1ad8 b8d479c 27d1ad8 b8d479c 27d1ad8 b8d479c 27d1ad8 b8d479c 27d1ad8 b8d479c 27d1ad8 b8d479c 6d6105e b8d479c 27d1ad8 c445f29 b8d479c 6d6105e b8d479c e8136bf b8d479c 77c7bbc b8d479c e8136bf b8d479c 7b5d34a 5fe6fbb 8573732 ac908c9 8573732 e8136bf 76a9cb6 607f59c 42a62e6 27d1ad8 607f59c 27d1ad8 a3c9b94 5fc830c 4650543 101ac9d 4650543 27d1ad8 5fc830c c62344d 5fc830c 731d2c7 5fc830c 101ac9d e50d067 101ac9d 28a897d 2a58495 67bb00c 2a58495 0a05970 2a58495 0a05970 28a897d 0a05970 27d1ad8 67bb00c caeff28 0a05970 644cdf1 27d1ad8 5603a1a d3640a5 caeff28 5603a1a b685dda 27d1ad8 80c5b7b 7e82d79 c1d012f 80c5b7b c1d012f 607f59c 2e28741 27d1ad8 607f59c 27d1ad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
---
license: apache-2.0
language: en
tags:
- deberta-v3-base
- deberta-v3
- deberta
- text-classification
- nli
- natural-language-inference
- multitask
- multi-task
- pipeline
- extreme-multi-task
- extreme-mtl
- tasksource
- zero-shot
- rlhf
model-index:
- name: deberta-v3-base-tasksource-nli
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
config: rte
split: validation
metrics:
- type: accuracy
value: 0.89
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: anli-r3
type: anli
config: plain_text
split: validation
metrics:
- type: accuracy
value: 0.52
name: Accuracy
datasets:
- glue
- super_glue
- anli
- tasksource/babi_nli
- sick
- snli
- scitail
- OpenAssistant/oasst1
- universal_dependencies
- hans
- qbao775/PARARULE-Plus
- alisawuffles/WANLI
- metaeval/recast
- sileod/probability_words_nli
- joey234/nan-nli
- pietrolesci/nli_fever
- pietrolesci/breaking_nli
- pietrolesci/conj_nli
- pietrolesci/fracas
- pietrolesci/dialogue_nli
- pietrolesci/mpe
- pietrolesci/dnc
- pietrolesci/gpt3_nli
- pietrolesci/recast_white
- pietrolesci/joci
- martn-nguyen/contrast_nli
- pietrolesci/robust_nli
- pietrolesci/robust_nli_is_sd
- pietrolesci/robust_nli_li_ts
- pietrolesci/gen_debiased_nli
- pietrolesci/add_one_rte
- metaeval/imppres
- pietrolesci/glue_diagnostics
- hlgd
- PolyAI/banking77
- paws
- quora
- medical_questions_pairs
- conll2003
- nlpaueb/finer-139
- Anthropic/hh-rlhf
- Anthropic/model-written-evals
- truthful_qa
- nightingal3/fig-qa
- tasksource/bigbench
- blimp
- cos_e
- cosmos_qa
- dream
- openbookqa
- qasc
- quartz
- quail
- head_qa
- sciq
- social_i_qa
- wiki_hop
- wiqa
- piqa
- hellaswag
- pkavumba/balanced-copa
- 12ml/e-CARE
- art
- tasksource/mmlu
- winogrande
- codah
- ai2_arc
- definite_pronoun_resolution
- swag
- math_qa
- metaeval/utilitarianism
- mteb/amazon_counterfactual
- SetFit/insincere-questions
- SetFit/toxic_conversations
- turingbench/TuringBench
- trec
- tals/vitaminc
- hope_edi
- strombergnlp/rumoureval_2019
- ethos
- tweet_eval
- discovery
- pragmeval
- silicone
- lex_glue
- papluca/language-identification
- imdb
- rotten_tomatoes
- ag_news
- yelp_review_full
- financial_phrasebank
- poem_sentiment
- dbpedia_14
- amazon_polarity
- app_reviews
- hate_speech18
- sms_spam
- humicroedit
- snips_built_in_intents
- banking77
- hate_speech_offensive
- yahoo_answers_topics
- pacovaldez/stackoverflow-questions
- zapsdcn/hyperpartisan_news
- zapsdcn/sciie
- zapsdcn/citation_intent
- go_emotions
- allenai/scicite
- liar
- relbert/lexical_relation_classification
- metaeval/linguisticprobing
- tasksource/crowdflower
- metaeval/ethics
- emo
- google_wellformed_query
- tweets_hate_speech_detection
- has_part
- wnut_17
- ncbi_disease
- acronym_identification
- jnlpba
- species_800
- SpeedOfMagic/ontonotes_english
- blog_authorship_corpus
- launch/open_question_type
- health_fact
- commonsense_qa
- mc_taco
- ade_corpus_v2
- prajjwal1/discosense
- circa
- PiC/phrase_similarity
- copenlu/scientific-exaggeration-detection
- quarel
- mwong/fever-evidence-related
- numer_sense
- dynabench/dynasent
- raquiba/Sarcasm_News_Headline
- sem_eval_2010_task_8
- demo-org/auditor_review
- medmcqa
- aqua_rat
- RuyuanWan/Dynasent_Disagreement
- RuyuanWan/Politeness_Disagreement
- RuyuanWan/SBIC_Disagreement
- RuyuanWan/SChem_Disagreement
- RuyuanWan/Dilemmas_Disagreement
- lucasmccabe/logiqa
- wiki_qa
- metaeval/cycic_classification
- metaeval/cycic_multiplechoice
- metaeval/sts-companion
- metaeval/commonsense_qa_2.0
- metaeval/lingnli
- metaeval/monotonicity-entailment
- metaeval/arct
- metaeval/scinli
- metaeval/naturallogic
- onestop_qa
- demelin/moral_stories
- corypaik/prost
- aps/dynahate
- metaeval/syntactic-augmentation-nli
- metaeval/autotnli
- lasha-nlp/CONDAQA
- openai/webgpt_comparisons
- Dahoas/synthetic-instruct-gptj-pairwise
- metaeval/scruples
- metaeval/wouldyourather
- sileod/attempto-nli
- metaeval/defeasible-nli
- metaeval/help-nli
- metaeval/nli-veridicality-transitivity
- metaeval/natural-language-satisfiability
- metaeval/lonli
- tasksource/dadc-limit-nli
- ColumbiaNLP/FLUTE
- metaeval/strategy-qa
- openai/summarize_from_feedback
- tasksource/folio
- metaeval/tomi-nli
- metaeval/avicenna
- stanfordnlp/SHP
- GBaker/MedQA-USMLE-4-options-hf
- GBaker/MedQA-USMLE-4-options
- sileod/wikimedqa
- declare-lab/cicero
- amydeng2000/CREAK
- metaeval/mutual
- inverse-scaling/NeQA
- inverse-scaling/quote-repetition
- inverse-scaling/redefine-math
- tasksource/puzzte
- metaeval/implicatures
- race
- metaeval/spartqa-yn
- metaeval/spartqa-mchoice
- metaeval/temporal-nli
- metaeval/ScienceQA_text_only
- AndyChiang/cloth
- metaeval/logiqa-2.0-nli
- tasksource/oasst1_dense_flat
- metaeval/boolq-natural-perturbations
- metaeval/path-naturalness-prediction
- riddle_sense
- Jiangjie/ekar_english
- metaeval/implicit-hate-stg1
- metaeval/chaos-mnli-ambiguity
- IlyaGusev/headline_cause
- metaeval/race-c
- metaeval/equate
- metaeval/ambient
- AndyChiang/dgen
- metaeval/clcd-english
- civil_comments
- metaeval/acceptability-prediction
- maximedb/twentyquestions
- metaeval/counterfactually-augmented-snli
- tasksource/I2D2
- sileod/mindgames
- metaeval/counterfactually-augmented-imdb
- metaeval/cnli
- metaeval/reclor
- tasksource/oasst1_pairwise_rlhf_reward
- tasksource/zero-shot-label-nli
- webis/args_me
- webis/Touche23-ValueEval
- tasksource/starcon
- tasksource/ruletaker
- lighteval/lsat_qa
- tasksource/ConTRoL-nli
- tasksource/tracie
- tasksource/sherliic
- tasksource/sen-making
- tasksource/winowhy
- mediabiasgroup/mbib-base
- tasksource/robustLR
- CLUTRR/v1
- tasksource/logical-fallacy
- tasksource/parade
- tasksource/cladder
- tasksource/subjectivity
- tasksource/MOH
- tasksource/VUAC
- tasksource/TroFi
- sharc_modified
- tasksource/conceptrules_v2
- tasksource/disrpt
- conll2000
- DFKI-SLT/few-nerd
- tasksource/com2sense
- tasksource/scone
- tasksource/winodict
- tasksource/fool-me-twice
- tasksource/monli
- tasksource/corr2cause
- tasksource/apt
- zeroshot/twitter-financial-news-sentiment
- tasksource/icl-symbol-tuning-instruct
- tasksource/SpaceNLI
- sihaochen/propsegment
- HannahRoseKirk/HatemojiBuild
- tasksource/regset
- tasksource/babi_nli
- lmsys/chatbot_arena_conversations
metrics:
- accuracy
library_name: transformers
pipeline_tag: zero-shot-classification
---
# Model Card for DeBERTa-v3-base-tasksource-nli
This is [DeBERTa-v3-base](https://hf.co/microsoft/deberta-v3-base) fine-tuned with multi-task learning on 600 tasks of the [tasksource collection](https://github.com/sileod/tasksource/).
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI), and can be used for:
- Zero-shot entailment-based classification for arbitrary labels [ZS].
- Natural language inference [NLI]
- Hundreds of previous tasks with tasksource-adapters [TA].
- Further fine-tuning on a new task or tasksource task (classification, token classification or multiple-choice) [FT].
# [ZS] Zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",model="sileod/deberta-v3-base-tasksource-nli")
text = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(text, candidate_labels)
```
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification.
# [NLI] Natural language inference pipeline
```python
from transformers import pipeline
nli_pipe = pipeline("text-classification",model="sileod/deberta-v3-base-tasksource-nli")
make_input = lambda x: [dict(text=prem,text_pair=hyp) for prem,hyp in x]
nli_pipe(make_input([('there is a cat','there is a black cat')])) #list of (premise,hypothesis)
# [{'label': 'neutral', 'score': 0.9952911138534546}]
```
# [TA] Tasksource-adapters: 1 line access to hundreds of tasks
```python
# !pip install tasknet
import tasknet as tn
pipe = tn.load_pipeline('sileod/deberta-v3-base-tasksource-nli','glue/sst2') # works for 500+ tasksource tasks
pipe(['That movie was great !', 'Awful movie.'])
# [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}]
```
The list of tasks is available in model config.json.
This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible.
# [FT] Tasknet: 3 lines fine-tuning
```python
# !pip install tasknet
import tasknet as tn
hparams=dict(model_name='sileod/deberta-v3-base-tasksource-nli', learning_rate=2e-5)
model, trainer = tn.Model_Trainer([tn.AutoTask("glue/rte")], hparams)
trainer.train()
```
## Evaluation
This model ranked 1st among all models with the microsoft/deberta-v3-base architecture according to the IBM model recycling evaluation.
https://ibm.github.io/model-recycling/
### Software and training details
The model was trained on 600 tasks for 200k steps with a batch size of 384 and a peak learning rate of 2e-5. Training took 12 days on Nvidia A30 24GB gpu.
This is the shared model with the MNLI classifier on top. Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched.
https://github.com/sileod/tasksource/ \
https://github.com/sileod/tasknet/ \
Training code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing
# Citation
More details on this [article:](https://arxiv.org/abs/2301.05948)
```
@article{sileo2023tasksource,
title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation},
author={Sileo, Damien},
url= {https://arxiv.org/abs/2301.05948},
journal={arXiv preprint arXiv:2301.05948},
year={2023}
}
```
# Model Card Contact
[email protected]
</details> |