Upload folder using huggingface_hub
Browse files- README.md +92 -0
- config.json +32 -0
- generation_config.json +9 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +394 -0
- special_tokens_map.json +38 -0
- tokenization_internlm2.py +236 -0
- tokenization_internlm2_fast.py +214 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +102 -0
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Converted Qwen2 from InternLM2.5-7B-Chat
|
2 |
+
|
3 |
+
## Descritpion
|
4 |
+
This is a converted model from [InternLM2.5-7B-Chat](https://huggingface.co/internlm/internlm2_5-7b-chat) to __Qwen2__ format. This conversion allows you to use InternLM2.5-7B-Chat as if it were a Qwen2 model, which is convenient for some *inference use cases*. The __precision__ is __excatly the same__ as the original model.
|
5 |
+
|
6 |
+
## Usage
|
7 |
+
You can load the model using the `Qwen2ForCausalLM` class as shown below:
|
8 |
+
```python
|
9 |
+
device = "cpu" # cpu is exacatly the same
|
10 |
+
attn_impl = 'eager' # the attention implementation to use
|
11 |
+
meta_instruction = ("You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
12 |
+
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
|
13 |
+
"(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
|
14 |
+
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such "
|
15 |
+
"as English and 中文."
|
16 |
+
)
|
17 |
+
prompt1 = "介绍下你自己"
|
18 |
+
prompt2 = "介绍下上海人工智能实验室"
|
19 |
+
|
20 |
+
def build_inputs(tokenizer, query: str, history: List[Tuple[str, str]] = None, meta_instruction=meta_instruction):
|
21 |
+
if history is None:
|
22 |
+
history = []
|
23 |
+
if tokenizer.add_bos_token:
|
24 |
+
prompt = ""
|
25 |
+
else:
|
26 |
+
prompt = tokenizer.bos_token
|
27 |
+
if meta_instruction:
|
28 |
+
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
|
29 |
+
for record in history:
|
30 |
+
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
|
31 |
+
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
|
32 |
+
return tokenizer([prompt], return_tensors="pt")
|
33 |
+
|
34 |
+
@torch.inference_mode()
|
35 |
+
def chat(
|
36 |
+
model: Union[AutoModelForCausalLM, Qwen2ForCausalLM],
|
37 |
+
tokenizer,
|
38 |
+
query: str,
|
39 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
40 |
+
streamer: Optional[BaseStreamer] = None,
|
41 |
+
max_new_tokens: int = 1024,
|
42 |
+
do_sample: bool = True,
|
43 |
+
temperature: float = 0.8,
|
44 |
+
top_p: float = 0.8,
|
45 |
+
meta_instruction: str = meta_instruction,
|
46 |
+
**kwargs,
|
47 |
+
):
|
48 |
+
if history is None:
|
49 |
+
history = []
|
50 |
+
inputs = build_inputs(tokenizer, query, history, meta_instruction)
|
51 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
52 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
53 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
|
54 |
+
outputs = model.generate(
|
55 |
+
**inputs,
|
56 |
+
streamer=streamer,
|
57 |
+
max_new_tokens=max_new_tokens,
|
58 |
+
do_sample=do_sample,
|
59 |
+
temperature=temperature,
|
60 |
+
top_p=top_p,
|
61 |
+
eos_token_id=eos_token_id,
|
62 |
+
**kwargs,
|
63 |
+
)
|
64 |
+
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
|
65 |
+
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
66 |
+
response = response.split("<|im_end|>")[0]
|
67 |
+
history = history + [(query, response)]
|
68 |
+
return response, history
|
69 |
+
|
70 |
+
|
71 |
+
# use the official tokenizer
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("silence09/InternLM2.5-7B-Chat-Converted-Qwen2", trust_remote_code=True)
|
73 |
+
# use the converted LlaMA model
|
74 |
+
qwen2_model = Qwen2ForCausalLM.from_pretrained(
|
75 |
+
"silence09/InternLM2.5-7B-Chat-Converted-Qwen2",
|
76 |
+
torch_dtype='auto',
|
77 |
+
attn_implementation=attn_impl).to(device)
|
78 |
+
qwen2_model.eval()
|
79 |
+
response_qwen2_and_splitfunc_1, history = chat(qwen2_model, tokenizer, prompt1, history=[], do_sample=False)
|
80 |
+
print(f"User Input: {prompt1}\nConverted LlaMA Response: {response_qwen2_and_splitfunc_1}")
|
81 |
+
|
82 |
+
response_qwen2_and_splitfunc_2, history = chat(qwen2_model, tokenizer, prompt2, history=history, do_sample=False)
|
83 |
+
print(f"User Input: {prompt2}\nConverted LlaMA Response: {response_qwen2_and_splitfunc_2}")
|
84 |
+
|
85 |
+
```
|
86 |
+
|
87 |
+
## Precision Guarantee
|
88 |
+
To comare result with the original model, you can use this [code](https://github.com/silencelamb/naked_llama/blob/main/hf_example/hf_internlm_7b_qwen2_compare.py)
|
89 |
+
|
90 |
+
## More Info
|
91 |
+
It was converted using the python script available at [this repository](https://github.com/silencelamb/naked_llama/blob/main/hf_example/convert_internlm_to_qwen_hf.py)
|
92 |
+
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 28,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"pad_token_id": 2,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": {
|
21 |
+
"factor": 2.0,
|
22 |
+
"type": "dynamic"
|
23 |
+
},
|
24 |
+
"rope_theta": 1000000,
|
25 |
+
"sliding_window": 4096,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "bfloat16",
|
28 |
+
"transformers_version": "4.38.1",
|
29 |
+
"use_cache": true,
|
30 |
+
"use_sliding_window": false,
|
31 |
+
"vocab_size": 92544
|
32 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": [
|
4 |
+
2,
|
5 |
+
92542
|
6 |
+
],
|
7 |
+
"pad_token_id": 2,
|
8 |
+
"transformers_version": "4.38.1"
|
9 |
+
}
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2f4413e00f97619dabd6e995ea9cdd5deb202c62cb4014c57254a49eecd2244
|
3 |
+
size 4885599312
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d74e326566dd9963d2d923ec01f9fecade154d8e569e9b38c1f00d40f220615
|
3 |
+
size 4916054984
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dc45260e08b08ec856ceea6de87645da60412168a4e21132f15704c931520b3
|
3 |
+
size 4916079888
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf236a5762f09f87628b625014d4f9cd31644e1f2ff45eca9face719d8ca34f1
|
3 |
+
size 758120576
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15475810304
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
320 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
321 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
322 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
323 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
324 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
325 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
333 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
334 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
335 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
336 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
337 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
338 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
339 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
340 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
341 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
342 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
343 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
344 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
345 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
346 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
348 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
350 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
351 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
352 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
353 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
354 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
355 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
356 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
358 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
360 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
362 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
364 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
365 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
366 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
367 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
368 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
370 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
372 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
376 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
377 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
378 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
379 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
380 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
381 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
382 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
384 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
385 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
388 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
389 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
390 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
391 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
392 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
393 |
+
}
|
394 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|action_start|>",
|
6 |
+
"<|action_end|>",
|
7 |
+
"<|interpreter|>",
|
8 |
+
"<|plugin|>"
|
9 |
+
],
|
10 |
+
"bos_token": {
|
11 |
+
"content": "<s>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"eos_token": {
|
18 |
+
"content": "</s>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "</s>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"unk_token": {
|
32 |
+
"content": "<unk>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
}
|
38 |
+
}
|
tokenization_internlm2.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization classes for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, List, Optional, Tuple
|
22 |
+
|
23 |
+
import sentencepiece as spm
|
24 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
32 |
+
|
33 |
+
|
34 |
+
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
|
35 |
+
class InternLM2Tokenizer(PreTrainedTokenizer):
|
36 |
+
"""
|
37 |
+
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_file (`str`):
|
41 |
+
Path to the vocabulary file.
|
42 |
+
"""
|
43 |
+
|
44 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
45 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
46 |
+
model_input_names = ["input_ids", "attention_mask"]
|
47 |
+
_auto_class = "AutoTokenizer"
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vocab_file,
|
52 |
+
unk_token="<unk>",
|
53 |
+
bos_token="<s>",
|
54 |
+
eos_token="</s>",
|
55 |
+
pad_token="</s>",
|
56 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
57 |
+
add_bos_token=True,
|
58 |
+
add_eos_token=False,
|
59 |
+
decode_with_prefix_space=False,
|
60 |
+
clean_up_tokenization_spaces=False,
|
61 |
+
**kwargs,
|
62 |
+
):
|
63 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
64 |
+
self.vocab_file = vocab_file
|
65 |
+
self.add_bos_token = add_bos_token
|
66 |
+
self.add_eos_token = add_eos_token
|
67 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
68 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
69 |
+
self.sp_model.Load(vocab_file)
|
70 |
+
self._no_prefix_space_tokens = None
|
71 |
+
super().__init__(
|
72 |
+
bos_token=bos_token,
|
73 |
+
eos_token=eos_token,
|
74 |
+
unk_token=unk_token,
|
75 |
+
pad_token=pad_token,
|
76 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
77 |
+
**kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
@property
|
81 |
+
def no_prefix_space_tokens(self):
|
82 |
+
if self._no_prefix_space_tokens is None:
|
83 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
84 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
85 |
+
return self._no_prefix_space_tokens
|
86 |
+
|
87 |
+
@property
|
88 |
+
def vocab_size(self):
|
89 |
+
"""Returns vocab size"""
|
90 |
+
return self.sp_model.get_piece_size()
|
91 |
+
|
92 |
+
@property
|
93 |
+
def bos_token_id(self) -> Optional[int]:
|
94 |
+
return self.sp_model.bos_id()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def eos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.eos_id()
|
99 |
+
|
100 |
+
def get_vocab(self):
|
101 |
+
"""Returns vocab as a dict"""
|
102 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
103 |
+
vocab.update(self.added_tokens_encoder)
|
104 |
+
return vocab
|
105 |
+
|
106 |
+
def _tokenize(self, text):
|
107 |
+
"""Returns a tokenized string."""
|
108 |
+
return self.sp_model.encode(text, out_type=str)
|
109 |
+
|
110 |
+
def _convert_token_to_id(self, token):
|
111 |
+
"""Converts a token (str) in an id using the vocab."""
|
112 |
+
return self.sp_model.piece_to_id(token)
|
113 |
+
|
114 |
+
def _convert_id_to_token(self, index):
|
115 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
116 |
+
token = self.sp_model.IdToPiece(index)
|
117 |
+
return token
|
118 |
+
|
119 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
120 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
121 |
+
return " " + decoded
|
122 |
+
else:
|
123 |
+
return decoded
|
124 |
+
|
125 |
+
def convert_tokens_to_string(self, tokens):
|
126 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
127 |
+
current_sub_tokens = []
|
128 |
+
out_string = ""
|
129 |
+
prev_is_special = False
|
130 |
+
for token in tokens:
|
131 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
132 |
+
if token in self.all_special_tokens:
|
133 |
+
if not prev_is_special:
|
134 |
+
out_string += " "
|
135 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
136 |
+
prev_is_special = True
|
137 |
+
current_sub_tokens = []
|
138 |
+
else:
|
139 |
+
current_sub_tokens.append(token)
|
140 |
+
prev_is_special = False
|
141 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
142 |
+
out_string = self.clean_up_tokenization(out_string)
|
143 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
144 |
+
return out_string[1:]
|
145 |
+
|
146 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
147 |
+
"""
|
148 |
+
Save the vocabulary and special tokens file to a directory.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
save_directory (`str`):
|
152 |
+
The directory in which to save the vocabulary.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`Tuple(str)`: Paths to the files saved.
|
156 |
+
"""
|
157 |
+
if not os.path.isdir(save_directory):
|
158 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
159 |
+
return
|
160 |
+
out_vocab_file = os.path.join(
|
161 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
162 |
+
)
|
163 |
+
|
164 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
165 |
+
copyfile(self.vocab_file, out_vocab_file)
|
166 |
+
elif not os.path.isfile(self.vocab_file):
|
167 |
+
with open(out_vocab_file, "wb") as fi:
|
168 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
169 |
+
fi.write(content_spiece_model)
|
170 |
+
|
171 |
+
return (out_vocab_file,)
|
172 |
+
|
173 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
174 |
+
if self.add_bos_token:
|
175 |
+
bos_token_ids = [self.bos_token_id]
|
176 |
+
else:
|
177 |
+
bos_token_ids = []
|
178 |
+
|
179 |
+
output = bos_token_ids + token_ids_0
|
180 |
+
|
181 |
+
if token_ids_1 is not None:
|
182 |
+
output = output + token_ids_1
|
183 |
+
|
184 |
+
if self.add_eos_token:
|
185 |
+
output = output + [self.eos_token_id]
|
186 |
+
|
187 |
+
return output
|
188 |
+
|
189 |
+
def get_special_tokens_mask(
|
190 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
191 |
+
) -> List[int]:
|
192 |
+
"""
|
193 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
194 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
token_ids_0 (`List[int]`):
|
198 |
+
List of IDs.
|
199 |
+
token_ids_1 (`List[int]`, *optional*):
|
200 |
+
Optional second list of IDs for sequence pairs.
|
201 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
202 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
206 |
+
"""
|
207 |
+
if already_has_special_tokens:
|
208 |
+
return super().get_special_tokens_mask(
|
209 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
210 |
+
)
|
211 |
+
|
212 |
+
if token_ids_1 is None:
|
213 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
214 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
215 |
+
|
216 |
+
def create_token_type_ids_from_sequences(
|
217 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
218 |
+
) -> List[int]:
|
219 |
+
"""
|
220 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
221 |
+
use of token type ids, therefore a list of zeros is returned.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
token_ids_0 (`List[int]`):
|
225 |
+
List of IDs.
|
226 |
+
token_ids_1 (`List[int]`, *optional*):
|
227 |
+
Optional second list of IDs for sequence pairs.
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
`List[int]`: List of zeros.
|
231 |
+
"""
|
232 |
+
eos = [self.eos_token_id]
|
233 |
+
|
234 |
+
if token_ids_1 is None:
|
235 |
+
return len(token_ids_0 + eos) * [0]
|
236 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenization_internlm2_fast.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""Tokenization Fast class for InternLM."""
|
19 |
+
import os
|
20 |
+
from shutil import copyfile
|
21 |
+
from typing import Any, Dict, Optional, Tuple
|
22 |
+
|
23 |
+
from tokenizers import processors, decoders, Tokenizer, normalizers
|
24 |
+
from tokenizers.models import BPE
|
25 |
+
|
26 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
from transformers.convert_slow_tokenizer import (
|
30 |
+
SLOW_TO_FAST_CONVERTERS,
|
31 |
+
SpmConverter,
|
32 |
+
SentencePieceExtractor,
|
33 |
+
)
|
34 |
+
|
35 |
+
from .tokenization_internlm2 import InternLM2Tokenizer
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
40 |
+
|
41 |
+
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
|
42 |
+
class InternLM2Converter(SpmConverter):
|
43 |
+
handle_byte_fallback = True
|
44 |
+
|
45 |
+
def vocab(self, proto):
|
46 |
+
vocab = [
|
47 |
+
("<unk>", 0.0),
|
48 |
+
("<s>", 0.0),
|
49 |
+
("</s>", 0.0),
|
50 |
+
]
|
51 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
52 |
+
return vocab
|
53 |
+
|
54 |
+
def unk_id(self, proto):
|
55 |
+
unk_id = 0
|
56 |
+
return unk_id
|
57 |
+
|
58 |
+
def decoder(self, replacement, add_prefix_space):
|
59 |
+
decoders_sequence = [
|
60 |
+
decoders.Replace("▁", " "),
|
61 |
+
decoders.ByteFallback(),
|
62 |
+
decoders.Fuse(),
|
63 |
+
]
|
64 |
+
if self.proto.normalizer_spec.add_dummy_prefix:
|
65 |
+
decoders_sequence.append(decoders.Strip(content=" ", left=1))
|
66 |
+
return decoders.Sequence(decoders_sequence)
|
67 |
+
|
68 |
+
def tokenizer(self, proto):
|
69 |
+
model_type = proto.trainer_spec.model_type
|
70 |
+
vocab_scores = self.vocab(proto)
|
71 |
+
# special tokens
|
72 |
+
added_tokens = self.original_tokenizer.added_tokens_decoder
|
73 |
+
for i in range(len(vocab_scores)):
|
74 |
+
piece, score = vocab_scores[i]
|
75 |
+
if i in added_tokens:
|
76 |
+
vocab_scores[i] = (added_tokens[i].content, score)
|
77 |
+
if model_type == 1:
|
78 |
+
raise RuntimeError("InternLM2 is supposed to be a BPE model!")
|
79 |
+
|
80 |
+
elif model_type == 2:
|
81 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
82 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
83 |
+
tokenizer = Tokenizer(
|
84 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
85 |
+
)
|
86 |
+
tokenizer.add_special_tokens(
|
87 |
+
[ added_token for index, added_token in added_tokens.items()]
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
raise Exception(
|
91 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
92 |
+
)
|
93 |
+
|
94 |
+
return tokenizer
|
95 |
+
|
96 |
+
def normalizer(self, proto):
|
97 |
+
normalizers_list = []
|
98 |
+
if proto.normalizer_spec.add_dummy_prefix:
|
99 |
+
normalizers_list.append(normalizers.Prepend(prepend="▁"))
|
100 |
+
normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
|
101 |
+
return normalizers.Sequence(normalizers_list)
|
102 |
+
|
103 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
104 |
+
return None
|
105 |
+
|
106 |
+
SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
|
107 |
+
|
108 |
+
|
109 |
+
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
|
110 |
+
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
|
111 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
112 |
+
slow_tokenizer_class = InternLM2Tokenizer
|
113 |
+
padding_side = "left"
|
114 |
+
model_input_names = ["input_ids", "attention_mask"]
|
115 |
+
_auto_class = "AutoTokenizer"
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_file,
|
120 |
+
unk_token="<unk>",
|
121 |
+
bos_token="<s>",
|
122 |
+
eos_token="</s>",
|
123 |
+
pad_token="</s>",
|
124 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
125 |
+
add_bos_token=True,
|
126 |
+
add_eos_token=False,
|
127 |
+
decode_with_prefix_space=False,
|
128 |
+
clean_up_tokenization_spaces=False,
|
129 |
+
**kwargs,
|
130 |
+
):
|
131 |
+
super().__init__(
|
132 |
+
vocab_file=vocab_file,
|
133 |
+
unk_token=unk_token,
|
134 |
+
bos_token=bos_token,
|
135 |
+
eos_token=eos_token,
|
136 |
+
pad_token=pad_token,
|
137 |
+
sp_model_kwargs=sp_model_kwargs,
|
138 |
+
add_bos_token=add_bos_token,
|
139 |
+
add_eos_token=add_eos_token,
|
140 |
+
decode_with_prefix_space=decode_with_prefix_space,
|
141 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
142 |
+
**kwargs,
|
143 |
+
)
|
144 |
+
self._add_bos_token = add_bos_token
|
145 |
+
self._add_eos_token = add_eos_token
|
146 |
+
self.update_post_processor()
|
147 |
+
self.vocab_file = vocab_file
|
148 |
+
|
149 |
+
@property
|
150 |
+
def can_save_slow_tokenizer(self) -> bool:
|
151 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
152 |
+
|
153 |
+
def update_post_processor(self):
|
154 |
+
"""
|
155 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
156 |
+
"""
|
157 |
+
bos = self.bos_token
|
158 |
+
bos_token_id = self.bos_token_id
|
159 |
+
if bos is None and self.add_bos_token:
|
160 |
+
raise ValueError("add_bos_token = True but bos_token = None")
|
161 |
+
|
162 |
+
eos = self.eos_token
|
163 |
+
eos_token_id = self.eos_token_id
|
164 |
+
if eos is None and self.add_eos_token:
|
165 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
166 |
+
|
167 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
168 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
169 |
+
|
170 |
+
special_tokens = []
|
171 |
+
if self.add_bos_token:
|
172 |
+
special_tokens.append((bos, bos_token_id))
|
173 |
+
if self.add_eos_token:
|
174 |
+
special_tokens.append((eos, eos_token_id))
|
175 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
176 |
+
single=single, pair=pair, special_tokens=special_tokens
|
177 |
+
)
|
178 |
+
|
179 |
+
@property
|
180 |
+
def add_eos_token(self):
|
181 |
+
return self._add_eos_token
|
182 |
+
|
183 |
+
@property
|
184 |
+
def add_bos_token(self):
|
185 |
+
return self._add_bos_token
|
186 |
+
|
187 |
+
@add_eos_token.setter
|
188 |
+
def add_eos_token(self, value):
|
189 |
+
self._add_eos_token = value
|
190 |
+
self.update_post_processor()
|
191 |
+
|
192 |
+
@add_bos_token.setter
|
193 |
+
def add_bos_token(self, value):
|
194 |
+
self._add_bos_token = value
|
195 |
+
self.update_post_processor()
|
196 |
+
|
197 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
198 |
+
if not self.can_save_slow_tokenizer:
|
199 |
+
raise ValueError(
|
200 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
201 |
+
"tokenizer."
|
202 |
+
)
|
203 |
+
|
204 |
+
if not os.path.isdir(save_directory):
|
205 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
206 |
+
return
|
207 |
+
out_vocab_file = os.path.join(
|
208 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
209 |
+
)
|
210 |
+
|
211 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
212 |
+
copyfile(self.vocab_file, out_vocab_file)
|
213 |
+
|
214 |
+
return (out_vocab_file,)
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"92538": {
|
30 |
+
"content": "<|plugin|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"92539": {
|
38 |
+
"content": "<|interpreter|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"92540": {
|
46 |
+
"content": "<|action_end|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"92541": {
|
54 |
+
"content": "<|action_start|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"92542": {
|
62 |
+
"content": "<|im_end|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"92543": {
|
70 |
+
"content": "<|im_start|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"additional_special_tokens": [
|
79 |
+
"<|im_start|>",
|
80 |
+
"<|im_end|>",
|
81 |
+
"<|action_start|>",
|
82 |
+
"<|action_end|>",
|
83 |
+
"<|interpreter|>",
|
84 |
+
"<|plugin|>"
|
85 |
+
],
|
86 |
+
"auto_map": {
|
87 |
+
"AutoTokenizer": [
|
88 |
+
"tokenization_internlm2.InternLM2Tokenizer",
|
89 |
+
"tokenization_internlm2_fast.InternLM2TokenizerFast"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"bos_token": "<s>",
|
93 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
94 |
+
"clean_up_tokenization_spaces": false,
|
95 |
+
"decode_with_prefix_space": false,
|
96 |
+
"eos_token": "</s>",
|
97 |
+
"model_max_length": 1000000000000000019884624838656,
|
98 |
+
"pad_token": "</s>",
|
99 |
+
"sp_model_kwargs": null,
|
100 |
+
"tokenizer_class": "InternLM2Tokenizer",
|
101 |
+
"unk_token": "<unk>"
|
102 |
+
}
|