File size: 1,991 Bytes
c8c874a 19fea29 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 c8c874a 8bce849 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: creativeml-openrail-m
library_name: diffusers
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
- diffusers-training
base_model: stabilityai/stable-diffusion-2-1-base
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# controlnet_rough
Generate a roughness map from a photograph or basecolor (albedo) map.
# Usage
```
import argparse
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
import torch
parser = argparse.ArgumentParser(description="Args for parser")
parser.add_argument("--seed", type=int, default=1, help="Seed for inference")
args = parser.parse_args()
base_model_path = "stabilityai/stable-diffusion-2-1-base"
controlnet_path = "sidnarsipur/controlnet_rough"
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
control_image = load_image("inference/basecolor.png") #Change based on your image path
prompt = "Roughness Map" #Don't change!
if control_image.size[0] > 2048 or control_image.size[1] > 2048: #Optional
control_image = control_image.resize((control_image.size[0] // 2, control_image.size[1] // 2))
generator = torch.manual_seed(args.seed)
image = pipe(
prompt, num_inference_steps=50, generator=generator, image=control_image
).images[0]
image.save("inference/normal.png")
```
|