siddheshtv commited on
Commit
8996870
·
verified ·
1 Parent(s): 2d8056d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -22,6 +22,51 @@ Can do abstractive summarization of legal/contractual documents. Fine tuned on B
22
 
23
  - Abstractive summarization for legal docs (Banking, Legal, Contractual, etc.)
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ## Training Data
26
 
27
  - **Dataset URL:** [Multi-Lexsum](https://multilexsum.github.io/)
 
22
 
23
  - Abstractive summarization for legal docs (Banking, Legal, Contractual, etc.)
24
 
25
+ ## Sample Usage
26
+
27
+ Load model config and safetensors:
28
+ ```python
29
+ from transformers import BartForConditionalGeneration, BartTokenizer
30
+ import torch
31
+
32
+
33
+ model_name = "siddheshtv/bart-multi-lexsum"
34
+
35
+ model = BartForConditionalGeneration.from_pretrained(model_name)
36
+ tokenizer = BartTokenizer.from_pretrained(model_name)
37
+
38
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
39
+ model = model.to(device)
40
+ ```
41
+
42
+ Generate Summary Function
43
+ ```python
44
+ def generate_summary(model, tokenizer, text, max_length=512):
45
+ device = next(model.parameters()).device
46
+ inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
47
+ inputs = inputs.to(device)
48
+ summary_ids = model.generate(
49
+ inputs,
50
+ max_length=max_length,
51
+ min_length=40,
52
+ length_penalty=2.0,
53
+ num_beams=4,
54
+ early_stopping=True,
55
+ no_repeat_ngram_size=3,
56
+ forced_bos_token_id=0,
57
+ forced_eos_token_id=2
58
+ )
59
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
60
+ return summary
61
+ ```
62
+
63
+ Generate summary
64
+ ```python
65
+ generated_summary = generate_summary(model, tokenizer, example_text)
66
+ print("Generated Summary:")
67
+ print(generated_summary)
68
+ ```
69
+
70
  ## Training Data
71
 
72
  - **Dataset URL:** [Multi-Lexsum](https://multilexsum.github.io/)