File size: 1,358 Bytes
8ddd60d
 
 
 
 
 
 
 
 
 
 
 
10a462b
 
 
 
 
 
8ddd60d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
base_model: stabilityai/stable-diffusion-2-1-base
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- controlnet
- diffusers-training
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# controlnet-shunki555/model_out

These are controlnet weights trained on stabilityai/stable-diffusion-2-1-base with new type of conditioning.
You can find some example images below.

prompt: A lymph node without cancer metastasis, lymph, center of the image,
![images_0)](./images_0.png)
prompt: A lymph node without cancer metastasis, lymph, center of the image,
![images_1)](./images_1.png)
prompt: A lymph node without cancer metastasis, lymph, center of the image,
![images_2)](./images_2.png)



## Intended uses & limitations

#### How to use

```python
# TODO: add an example code snippet for running this diffusion pipeline
```

#### Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

## Training details

[TODO: describe the data used to train the model]