File size: 7,989 Bytes
039647a
 
 
 
 
 
 
 
 
 
b99e299
039647a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import torch
from torch import nn, optim
from tqdm import tqdm
from huggingface_hub import HfApi
import numpy as np
from sklearn.metrics import (precision_score, recall_score, f1_score,
                             roc_auc_score, cohen_kappa_score, matthews_corrcoef,
                             confusion_matrix)

from modeling_sagvit import SAGViTClassifier
from data_loader import get_dataloaders

#####################################################################
# This file provides the training loop and metric computation. It uses
# the SAG-ViT model defined in sag_vit_model.py, and the data from data_loader.py.
# The training loop is adapted to implement early stopping and track various metrics.
#####################################################################

def train_model(model, model_name, train_loader, val_loader, num_epochs, criterion, optimizer, device, patience=8, verbose=True):
    """
    Trains the SAG-ViT model and evaluates it on the validation set.
    Implements early stopping based on validation loss.
    
    Parameters:
    - model (nn.Module): The SAG-ViT model.
    - model_name (str): A name to identify the model (used for saving checkpoints).
    - train_loader, val_loader: DataLoaders for training and validation.
    - num_epochs (int): Maximum number of epochs.
    - criterion (nn.Module): Loss function.
    - optimizer (torch.optim.Optimizer): Optimization algorithm.
    - device (torch.device): Device to run the computations on (CPU/GPU).
    - patience (int): Early stopping patience.
    
    Returns:
    - history (dict): Dictionary containing training and validation metrics per epoch.
    """

    history = {
        'train_loss': [], 'train_acc': [], 'train_prec': [], 'train_rec': [], 'train_f1': [],
        'train_auc': [], 'train_mcc': [], 'train_cohen_kappa': [], 'train_confusion_matrix': [],
        'val_loss': [], 'val_acc': [], 'val_prec': [], 'val_rec': [], 'val_f1': [],
        'val_auc': [], 'val_mcc': [], 'val_cohen_kappa': [], 'val_confusion_matrix': []
    }

    best_val_loss = float('inf')
    patience_counter = 0
    best_model_state = None

    for epoch in range(num_epochs):
        print(f'Epoch {epoch+1}/{num_epochs}')
        model.train()

        train_loss_total, correct, total = 0, 0, 0
        all_preds, all_labels, all_probs = [], [], []

        # Training loop
        for batch_idx, (X, y) in enumerate(tqdm(train_loader)):
            inputs, labels = X.to(device), y.to(device)
            optimizer.zero_grad()

            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            train_loss_total += loss.item()

            probs = torch.softmax(outputs, dim=1)
            _, preds = torch.max(outputs, 1)
            correct += (preds == labels).sum().item()
            total += labels.size(0)

            all_preds.extend(preds.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())
            all_probs.extend(probs.detach().cpu().numpy())

        # Compute training metrics
        train_acc = correct / total
        train_prec = precision_score(all_labels, all_preds, average='macro', zero_division=0)
        train_rec = recall_score(all_labels, all_preds, average='macro')
        train_f1 = f1_score(all_labels, all_preds, average='macro')
        train_cohen_kappa = cohen_kappa_score(all_labels, all_preds)
        train_mcc = matthews_corrcoef(all_labels, all_preds)
        train_confusion = confusion_matrix(all_labels, all_preds)

        history['train_loss'].append(train_loss_total / len(train_loader))
        history['train_acc'].append(train_acc)
        history['train_prec'].append(train_prec)
        history['train_rec'].append(train_rec)
        history['train_f1'].append(train_f1)
        history['train_cohen_kappa'].append(train_cohen_kappa)
        history['train_mcc'].append(train_mcc)
        history['train_confusion_matrix'].append(train_confusion)

        # Validation
        model.eval()
        val_loss_total, correct, total = 0, 0, 0
        all_preds, all_labels, all_probs = [], [], []

        with torch.no_grad():
            for batch_idx, (X, y) in enumerate(tqdm(val_loader)):
                inputs, labels = X.to(device), y.to(device)
                outputs = model(inputs)
                loss = criterion(outputs, labels)

                val_loss_total += loss.item()
                probs = torch.softmax(outputs, dim=1)
                _, preds = torch.max(outputs, 1)
                correct += (preds == labels).sum().item()
                total += labels.size(0)

                all_preds.extend(preds.cpu().numpy())
                all_labels.extend(labels.cpu().numpy())
                all_probs.extend(probs.detach().cpu().numpy())

        # Compute validation metrics
        val_acc = correct / total
        val_prec = precision_score(all_labels, all_preds, average='macro', zero_division=0)
        val_rec = recall_score(all_labels, all_preds, average='macro')
        val_f1 = f1_score(all_labels, all_preds, average='macro')
        val_cohen_kappa = cohen_kappa_score(all_labels, all_preds)
        val_mcc = matthews_corrcoef(all_labels, all_preds)
        val_confusion = confusion_matrix(all_labels, all_preds)

        history['val_loss'].append(val_loss_total / len(val_loader))
        history['val_acc'].append(val_acc)
        history['val_prec'].append(val_prec)
        history['val_rec'].append(val_rec)
        history['val_f1'].append(val_f1)
        history['val_cohen_kappa'].append(val_cohen_kappa)
        history['val_mcc'].append(val_mcc)
        history['val_confusion_matrix'].append(val_confusion)

        # Print epoch summary
        if verbose:
            print(f"Train Loss: {history['train_loss'][-1]:.4f}, Train Acc: {history['train_acc'][-1]:.4f}, "
                f"Val Loss: {history['val_loss'][-1]:.4f}, Val Acc: {history['val_acc'][-1]:.4f}")

        # Early stopping
        current_val_loss = history['val_loss'][-1]
        if current_val_loss < best_val_loss:
            best_val_loss = current_val_loss
            best_model_state = model.state_dict()
            patience_counter = 0
        else:
            patience_counter += 1
            print(f"Patience counter: {patience_counter}/{patience}")
            if patience_counter >= patience:
                print("Early stopping triggered.")
                model.load_state_dict(best_model_state)
                torch.save(model.state_dict(), f'{model_name}.pth')
                return history

    model.load_state_dict(best_model_state)
    torch.save(model.state_dict(), f'{model_name}.pth')

    return history


if __name__ == "__main__":
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Training on device: {device}")
    data_dir = "data/PlantVillage" # "path/to/data/dir"
    num_classes = len(os.listdir(data_dir))
    train_loader, val_loader = get_dataloaders(data_dir=data_dir, img_size=224, batch_size=32) # Minimum image size should be atleast (49, 49)

    model = SAGViTClassifier(num_classes=num_classes).to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.0001)
    num_epochs = 100

    history = train_model(
        model,
        'SAG-ViT',
        train_loader,
        val_loader,
        num_epochs,
        criterion,
        optimizer,
        device
    )

    # You may save history to a CSV or analyze it further as needed.
    # Example:
    # import pandas as pd
    # history_df = pd.DataFrame(history)
    # history_df.to_csv("training_history.csv", index=False)

    # Load the saved model back (best practice before pushing)
    model.load_state_dict(torch.load("SAG-ViT.pth"))
    model.eval()

    # Push the model to the Hugging Face Hub
    model.push_to_hub("shravvvv/SAG-ViT", commit_message="Initial model push", private=True, trust_remote_code=True)