shiv-am-04 commited on
Commit
97f0030
·
verified ·
1 Parent(s): 50b3413

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "custom-translation",
3
+ "architecture": "Keras Sequential",
4
+ "language": "en",
5
+ "task": "translation",
6
+ "max_seq_length": 50,
7
+ "tokenizer": {
8
+ "type": "custom",
9
+ "file_1": "en_tokenizer.json",
10
+ "file_2": "fr_tokenizer.json"
11
+ },
12
+ "framework": "tensorflow",
13
+ "description": "This is a custom translation model built using TensorFlow Keras and integrated with a tokenizer for seamless text translation. It supports tokenization and text generation directly using a user-defined function.",
14
+ "custom_class_file": "translation_model.py",
15
+ "version": 1.0,
16
+ "author": "Shivam Ghuge",
17
+ "license": "apache-2.0"
18
+ }
en_tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
fr_tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
model_weight/model.weights.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82bf670e412232ab115881757ade0d35b95721444529dc042744c0ec63808062
3
+ size 552959904
translate.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from tensorflow.keras.preprocessing.text import tokenizer_from_json
3
+ from tensorflow.keras.preprocessing.sequence import pad_sequences
4
+ from tensorflow.keras.models import load_model
5
+ import numpy as np
6
+
7
+ class TranslationModel:
8
+ def __init__(self, model_path,en_tokenizer,fr_tokenizer,max_len):
9
+ # Load the Keras model
10
+ self.model = load_model(model_path)
11
+
12
+ self.english_tokenizer = en_tokenizer
13
+
14
+ self.french_tokenizer = fr_tokenizer
15
+
16
+ # Define max sequence length
17
+ self.max_seq_length = max_len
18
+
19
+ def logits_index(self,text):
20
+ input_sequence = self.english_tokenizer.texts_to_sequences([text])
21
+ padded_input_sequence = pad_sequences(input_sequence, maxlen=self.max_seq_length, padding='post')
22
+ decoded_text = '<start>'
23
+
24
+ for i in range(self.max_seq_length):
25
+ target_sequence = self.french_tokenizer.texts_to_sequences([decoded_text])
26
+ padded_target_sequence = pad_sequences(target_sequence, maxlen=self.max_seq_length, padding='post')[:, :-1]
27
+
28
+ prediction = self.model([padded_input_sequence, padded_target_sequence])
29
+
30
+ idx = np.argmax(prediction[0, i, :])
31
+
32
+ return idx