Commit
·
50245e5
1
Parent(s):
c95594f
Update README.md
Browse files
README.md
CHANGED
@@ -14,8 +14,8 @@ metrics:
|
|
14 |
- bleu
|
15 |
library_name: transformers
|
16 |
---
|
17 |
-
# shibing624/text2vec-base-chinese-
|
18 |
-
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese-
|
19 |
|
20 |
It maps sentences to a 768 dimensional dense vector space and can be used for tasks
|
21 |
like sentence embeddings, text matching or semantic search.
|
@@ -36,7 +36,7 @@ For an automated evaluation of this model, see the *Evaluation Benchmark*: [text
|
|
36 |
| SBERT | xlm-roberta-base | [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 3138 |
|
37 |
| CoSENT | hfl/chinese-macbert-base | [shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese) | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 48.25 | 3008 |
|
38 |
| CoSENT | hfl/chinese-lert-large | [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 48.08 | 2092 |
|
39 |
-
| CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-
|
40 |
|
41 |
|
42 |
## Usage (text2vec)
|
@@ -52,7 +52,7 @@ Then you can use the model like this:
|
|
52 |
from text2vec import SentenceModel
|
53 |
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
54 |
|
55 |
-
model = SentenceModel('shibing624/text2vec-base-chinese-
|
56 |
embeddings = model.encode(sentences)
|
57 |
print(embeddings)
|
58 |
```
|
@@ -79,8 +79,8 @@ def mean_pooling(model_output, attention_mask):
|
|
79 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
80 |
|
81 |
# Load model from HuggingFace Hub
|
82 |
-
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese-
|
83 |
-
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese-
|
84 |
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
85 |
# Tokenize sentences
|
86 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -107,7 +107,7 @@ Then load model and predict:
|
|
107 |
```python
|
108 |
from sentence_transformers import SentenceTransformer
|
109 |
|
110 |
-
m = SentenceTransformer("shibing624/text2vec-base-chinese-
|
111 |
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
112 |
|
113 |
sentence_embeddings = m.encode(sentences)
|
|
|
14 |
- bleu
|
15 |
library_name: transformers
|
16 |
---
|
17 |
+
# shibing624/text2vec-base-chinese-sentence
|
18 |
+
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese-sentence.
|
19 |
|
20 |
It maps sentences to a 768 dimensional dense vector space and can be used for tasks
|
21 |
like sentence embeddings, text matching or semantic search.
|
|
|
36 |
| SBERT | xlm-roberta-base | [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 3138 |
|
37 |
| CoSENT | hfl/chinese-macbert-base | [shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese) | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 48.25 | 3008 |
|
38 |
| CoSENT | hfl/chinese-lert-large | [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 48.08 | 2092 |
|
39 |
+
| CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-sentence](https://huggingface.co/shibing624/text2vec-base-chinese-sentence) | 51.26 | 68.72 | 79.13 | 34.28 | 80.70 | **62.81** | 3066 |
|
40 |
|
41 |
|
42 |
## Usage (text2vec)
|
|
|
52 |
from text2vec import SentenceModel
|
53 |
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
54 |
|
55 |
+
model = SentenceModel('shibing624/text2vec-base-chinese-sentence')
|
56 |
embeddings = model.encode(sentences)
|
57 |
print(embeddings)
|
58 |
```
|
|
|
79 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
80 |
|
81 |
# Load model from HuggingFace Hub
|
82 |
+
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese-sentence')
|
83 |
+
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese-sentence')
|
84 |
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
85 |
# Tokenize sentences
|
86 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
107 |
```python
|
108 |
from sentence_transformers import SentenceTransformer
|
109 |
|
110 |
+
m = SentenceTransformer("shibing624/text2vec-base-chinese-sentence")
|
111 |
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
112 |
|
113 |
sentence_embeddings = m.encode(sentences)
|