shibing624 commited on
Commit
9954ba7
·
1 Parent(s): 2d0087e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -8
README.md CHANGED
@@ -13,7 +13,7 @@ license: "apache-2.0"
13
 
14
  `macbert4csc-base-chinese` evaluate SIGHAN2015 test data:
15
 
16
- - Char Level: precision=0.9372, recall=0.8640 f1=0.8991
17
  - Sentence Level: precision:0.8264, recall:0.7366, f1:0.7789
18
 
19
  由于训练使用的数据使用了SIGHAN2015的训练集(复现paper),在SIGHAN2015的测试集上达到SOTA水平。
@@ -47,21 +47,26 @@ model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese")
47
  model = model.to(device)
48
 
49
  texts = ["今天新情很好", "你找到你最喜欢的工作,我也很高心。"]
50
- outputs = model(**tokenizer(texts, padding=True, return_tensors='pt').to(device))
 
51
 
52
  def get_errors(corrected_text, origin_text):
53
- details = []
54
  for i, ori_char in enumerate(origin_text):
55
- if ori_char in [' ', '“', '”', '‘', '’', '琊']:
56
- # add blank space
57
  corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
58
  continue
59
  if i >= len(corrected_text):
60
  continue
61
  if ori_char != corrected_text[i]:
62
- details.append((ori_char, corrected_text[i], i, i + 1))
63
- details = sorted(details, key=operator.itemgetter(2))
64
- return corrected_text, details
 
 
 
 
65
 
66
  result = []
67
  for ids, text in zip(outputs.logits, texts):
 
13
 
14
  `macbert4csc-base-chinese` evaluate SIGHAN2015 test data:
15
 
16
+ - Char Level: precision:0.9372, recall:0.8640, f1:0.8991
17
  - Sentence Level: precision:0.8264, recall:0.7366, f1:0.7789
18
 
19
  由于训练使用的数据使用了SIGHAN2015的训练集(复现paper),在SIGHAN2015的测试集上达到SOTA水平。
 
47
  model = model.to(device)
48
 
49
  texts = ["今天新情很好", "你找到你最喜欢的工作,我也很高心。"]
50
+ with torch.no_grad():
51
+ outputs = model(**tokenizer(texts, padding=True, return_tensors='pt').to(device))
52
 
53
  def get_errors(corrected_text, origin_text):
54
+ sub_details = []
55
  for i, ori_char in enumerate(origin_text):
56
+ if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
57
+ # add unk word
58
  corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
59
  continue
60
  if i >= len(corrected_text):
61
  continue
62
  if ori_char != corrected_text[i]:
63
+ if ori_char.lower() == corrected_text[i]:
64
+ # pass english upper char
65
+ corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
66
+ continue
67
+ sub_details.append((ori_char, corrected_text[i], i, i + 1))
68
+ sub_details = sorted(sub_details, key=operator.itemgetter(2))
69
+ return corrected_text, sub_details
70
 
71
  result = []
72
  for ids, text in zip(outputs.logits, texts):