File size: 2,661 Bytes
47a20a9
 
 
 
 
 
22a0e8b
 
47a20a9
 
 
 
 
 
 
 
 
 
 
 
22a0e8b
 
47a20a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187e9db
 
47a20a9
 
187e9db
47a20a9
 
 
22a0e8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a20a9
 
 
187e9db
47a20a9
187e9db
47a20a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_speach_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_speach_model

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9803
- Accuracy: 0.6923

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log        | 0.8889  | 6    | 0.8543          | 0.4615   |
| 0.3921        | 1.9259  | 13   | 1.0292          | 0.3846   |
| 0.4899        | 2.9630  | 20   | 0.7720          | 0.6923   |
| 0.4899        | 4.0     | 27   | 0.6074          | 0.6923   |
| 0.4529        | 4.8889  | 33   | 0.7270          | 0.6923   |
| 0.3684        | 5.9259  | 40   | 0.6883          | 0.6923   |
| 0.3684        | 6.9630  | 47   | 0.8489          | 0.6154   |
| 0.2618        | 8.0     | 54   | 0.8669          | 0.6154   |
| 0.2343        | 8.8889  | 60   | 0.9146          | 0.6923   |
| 0.2343        | 9.9259  | 67   | 0.8657          | 0.6154   |
| 0.2193        | 10.9630 | 74   | 0.6177          | 0.7692   |
| 0.2718        | 12.0    | 81   | 0.9329          | 0.5385   |
| 0.2718        | 12.8889 | 87   | 1.3075          | 0.5385   |
| 0.2549        | 13.9259 | 94   | 0.5816          | 0.8462   |
| 0.1191        | 14.9630 | 101  | 0.6591          | 0.7692   |
| 0.1191        | 16.0    | 108  | 0.7349          | 0.7692   |
| 0.1449        | 16.8889 | 114  | 0.9123          | 0.6923   |
| 0.0914        | 17.7778 | 120  | 0.9803          | 0.6923   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3