File size: 1,571 Bytes
47a20a9
 
 
8ee0514
47a20a9
 
 
 
 
 
 
 
 
 
 
 
8ee0514
47a20a9
8ee0514
 
 
 
 
 
 
47a20a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187e9db
 
47a20a9
 
187e9db
47a20a9
 
 
8ee0514
47a20a9
 
 
187e9db
47a20a9
187e9db
47a20a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: transformers
license: apache-2.0
base_model: ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition
tags:
- generated_from_trainer
model-index:
- name: my_awesome_speach_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_speach_model

This model is a fine-tuned version of [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.9911
- eval_accuracy: 0.6154
- eval_runtime: 0.2115
- eval_samples_per_second: 61.478
- eval_steps_per_second: 18.916
- epoch: 26.9630
- step: 182

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3