File size: 2,344 Bytes
cfbc515 ca70c15 cfbc515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentance_split_by_time_gpt_concate
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/f3srxnbb)
# sentance_split_by_time_gpt_concate
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8213
- Accuracy: 0.0730
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 25
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 2.0921 | 5.9928 | 1866 | 3.0241 | 0.0774 |
| 1.9094 | 11.9855 | 3732 | 3.0886 | 0.0816 |
| 1.7854 | 17.9783 | 5598 | 3.2711 | 0.0803 |
| 1.7194 | 23.9711 | 7464 | 3.4032 | 0.0787 |
| 1.6865 | 29.9639 | 9330 | 3.3919 | 0.0778 |
| 1.658 | 35.9566 | 11196 | 3.4449 | 0.0767 |
| 1.6521 | 41.9494 | 13062 | 3.6068 | 0.0753 |
| 1.6356 | 47.9422 | 14928 | 3.6376 | 0.0743 |
| 1.6355 | 53.9350 | 16794 | 3.7659 | 0.0739 |
| 1.6276 | 59.9277 | 18660 | 3.8213 | 0.0734 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|