sharkMeow commited on
Commit
ac8b507
1 Parent(s): 5488be6

Model save

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: OFA-Sys/chinese-clip-vit-base-patch16
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: sentance_split_by_aoi_gpt_add
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/harqk9wd)
16
+ # sentance_split_by_aoi_gpt_add
17
+
18
+ This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 3.5837
21
+ - Accuracy: 0.1041
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 25
42
+ - eval_batch_size: 20
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 200
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 60.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
55
+ | 1.168 | 5.9676 | 276 | 2.9707 | 0.1067 |
56
+ | 0.8242 | 11.9351 | 552 | 3.4872 | 0.0994 |
57
+ | 0.639 | 17.9027 | 828 | 3.5071 | 0.0965 |
58
+ | 0.5825 | 23.8703 | 1104 | 3.5619 | 0.0994 |
59
+ | 0.5449 | 29.8378 | 1380 | 3.5003 | 0.0994 |
60
+ | 0.5257 | 35.8054 | 1656 | 3.4785 | 0.1019 |
61
+ | 0.512 | 41.7730 | 1932 | 3.4630 | 0.1020 |
62
+ | 0.5039 | 47.7405 | 2208 | 3.5130 | 0.1036 |
63
+ | 0.492 | 53.7081 | 2484 | 3.5763 | 0.1038 |
64
+ | 0.4922 | 59.6757 | 2760 | 3.5837 | 0.1041 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.42.3
70
+ - Pytorch 2.3.1+cu121
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.19.1