Model save
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: OFA-Sys/chinese-clip-vit-base-patch16
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: sentance_split_by_aoi_gpt_add
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/harqk9wd)
|
16 |
+
# sentance_split_by_aoi_gpt_add
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.5837
|
21 |
+
- Accuracy: 0.1041
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 25
|
42 |
+
- eval_batch_size: 20
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 8
|
45 |
+
- total_train_batch_size: 200
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 60.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
55 |
+
| 1.168 | 5.9676 | 276 | 2.9707 | 0.1067 |
|
56 |
+
| 0.8242 | 11.9351 | 552 | 3.4872 | 0.0994 |
|
57 |
+
| 0.639 | 17.9027 | 828 | 3.5071 | 0.0965 |
|
58 |
+
| 0.5825 | 23.8703 | 1104 | 3.5619 | 0.0994 |
|
59 |
+
| 0.5449 | 29.8378 | 1380 | 3.5003 | 0.0994 |
|
60 |
+
| 0.5257 | 35.8054 | 1656 | 3.4785 | 0.1019 |
|
61 |
+
| 0.512 | 41.7730 | 1932 | 3.4630 | 0.1020 |
|
62 |
+
| 0.5039 | 47.7405 | 2208 | 3.5130 | 0.1036 |
|
63 |
+
| 0.492 | 53.7081 | 2484 | 3.5763 | 0.1038 |
|
64 |
+
| 0.4922 | 59.6757 | 2760 | 3.5837 | 0.1041 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.42.3
|
70 |
+
- Pytorch 2.3.1+cu121
|
71 |
+
- Datasets 2.20.0
|
72 |
+
- Tokenizers 0.19.1
|