File size: 2,391 Bytes
ff948b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a42e0
ff948b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: aoi_clip_high_resolution_concate_fusin_crop_each_text_256
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/e9k68fjg)
# aoi_clip_high_resolution_concate_fusin_crop_each_text_256

This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5401
- Accuracy: 0.0635

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 1.7271        | 5.9821  | 1602  | 3.0070          | 0.0789   |
| 1.6271        | 11.9642 | 3204  | 3.1514          | 0.0732   |
| 1.552         | 17.9462 | 4806  | 3.1511          | 0.0705   |
| 1.5094        | 23.9283 | 6408  | 3.3706          | 0.0684   |
| 1.484         | 29.9104 | 8010  | 3.4197          | 0.0672   |
| 1.4683        | 35.8925 | 9612  | 3.5270          | 0.0666   |
| 1.4567        | 41.8745 | 11214 | 3.4933          | 0.0658   |
| 1.4541        | 47.8566 | 12816 | 3.4874          | 0.0653   |
| 1.4539        | 53.8387 | 14418 | 3.5305          | 0.0646   |
| 1.452         | 59.8208 | 16020 | 3.5401          | 0.0640   |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1