File size: 2,391 Bytes
ff948b4 e1a42e0 ff948b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: aoi_clip_high_resolution_concate_fusin_crop_each_text_256
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/e9k68fjg)
# aoi_clip_high_resolution_concate_fusin_crop_each_text_256
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5401
- Accuracy: 0.0635
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 1.7271 | 5.9821 | 1602 | 3.0070 | 0.0789 |
| 1.6271 | 11.9642 | 3204 | 3.1514 | 0.0732 |
| 1.552 | 17.9462 | 4806 | 3.1511 | 0.0705 |
| 1.5094 | 23.9283 | 6408 | 3.3706 | 0.0684 |
| 1.484 | 29.9104 | 8010 | 3.4197 | 0.0672 |
| 1.4683 | 35.8925 | 9612 | 3.5270 | 0.0666 |
| 1.4567 | 41.8745 | 11214 | 3.4933 | 0.0658 |
| 1.4541 | 47.8566 | 12816 | 3.4874 | 0.0653 |
| 1.4539 | 53.8387 | 14418 | 3.5305 | 0.0646 |
| 1.452 | 59.8208 | 16020 | 3.5401 | 0.0640 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|