File size: 2,312 Bytes
f8defad
7dbadbb
f8defad
 
 
 
 
 
 
 
 
 
dfc4a06
f8defad
 
7dbadbb
f8defad
dfc4a06
f8defad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22f8fc
 
 
f8defad
 
 
dfc4a06
f8defad
 
7dbadbb
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc4a06
 
 
 
 
7dbadbb
 
f8defad
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
model-index:
- name: aoi_clip
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/kx6ba7ok)
# aoi_clip

This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.5439

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 40
- eval_batch_size: 44
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.2989        | 10.0  | 14790  | 6.2126          |
| 0.0626        | 20.0  | 29580  | 6.1552          |
| 0.0467        | 30.0  | 44370  | 6.0248          |
| 0.0383        | 40.0  | 59160  | 6.0260          |
| 0.0333        | 50.0  | 73950  | 5.9856          |
| 0.0301        | 60.0  | 88740  | 5.8489          |
| 0.0275        | 70.0  | 103530 | 5.8452          |
| 0.0255        | 80.0  | 118320 | 5.7286          |
| 0.0238        | 90.0  | 133110 | 5.6773          |
| 0.0225        | 100.0 | 147900 | 5.5744          |
| 0.0243        | 110.0 | 162690 | 5.6549          |
| 0.024         | 120.0 | 177480 | 5.5997          |
| 0.0227        | 130.0 | 192270 | 5.5604          |
| 0.0219        | 140.0 | 207060 | 5.5429          |
| 0.0217        | 150.0 | 221850 | 5.5439          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1