File size: 1,926 Bytes
f0ac833 3110525 b5478bf 3110525 b5478bf 3110525 f0ac833 434d2bb 3110525 434d2bb b4a83b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
language: fa
widget:
- text: "از هر دستی بگیری از همون [MASK] میدی"
- text: "این آخرین باره بهت [MASK] میگم"
- text: 'چرا آن جوان بیچاره را به سخره [MASK]'
- text: 'آخه محسن [MASK] هم شد خواننده؟'
- text: 'پسر عجب [MASK] زد'
tags:
- bert-fa
- bert-persian
model-index:
- name: dal-bert
results: []
---
DAL-BERT: Another pre-trained language model for Persian
---
DAL-BERT is a transformer-based model trained on more than 80 gigabytes of Persian text including both formal and informal (conversational) contexts. The architecture of this model follows the original BERT [[Devlin et al.](https://arxiv.org/abs/1810.04805)].
How to use the Model
---
```python
from transformers import BertForMaskedLM, BertTokenizer, pipeline
model = BertForMaskedLM.from_pretrained('sharif-dal/dal-bert')
tokenizer = BertTokenizer.from_pretrained('sharif-dal/dal-bert')
fill_sentence = pipeline('fill-mask', model=model, tokenizer=tokenizer)
fill_sentence('اینجا جمله مورد نظر خود را بنویسید و کلمه موردنظر را [MASK] کنید')
```
The Training Data
---
The abovementioned model was trained on a bunch of newspapers, news agencies' websites, technology-related sources, people's comments, magazines, literary criticism, and some blogs.
Evaluation
---
| Training Loss | Epoch | Step |
|:-------------:|:-----:|:-----:|
| 2.1855 | 13 | 7649486 |
Contributors
---
- [Arman Malekzadeh](http://ce.sharif.edu/~malekzaadeh/), PhD Student in AI @ Sharif University of Technology [[Linkedin](https://www.linkedin.com/in/arman-malekzadeh/)] [[Github](https://github.com/arm-on)]
- Amirhossein Ramazani, Master's Student in AI @ Sharif University of Technology [[Linkedin](https://www.linkedin.com/in/amirhossein-ramazani/)] [[Github](https://github.com/amirhossein1376)]
|