image2sketch / data /triplet_dataset.py
sharazAhm890's picture
init
7d90324 verified
import os
from torch import index_copy
from data.base_dataset import BaseDataset, get_transform
from data.image_folder import make_dataset
from PIL import Image
import random
#from tps_transformation import tps_transform
import numpy as np
import torch
import torchvision.transforms as transforms
class tpsdataset(BaseDataset):
def __init__(self, opt):
"""Initialize this dataset class.
Parameters:
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
"""
BaseDataset.__init__(self, opt)
self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA'
self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB'
self.dir_C = os.path.join(opt.dataroot, opt.phase + 'C') # create a path '/path/to/data/trainC'
self.dir_D = os.path.join(opt.dataroot, opt.phase + 'D') # create a path '/path/to/data/trainD'
self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA'
self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB'
self.C_paths = sorted(make_dataset(self.dir_C, opt.max_dataset_size)) # load images from '/path/to/data/trainC'
self.D_paths = sorted(make_dataset(self.dir_D, opt.max_dataset_size)) # load images from '/path/to/data/trainD'
self.A_size = len(self.A_paths) # get the size of dataset A
self.B_size = len(self.B_paths) # get the size of dataset B
self.C_size = len(self.C_paths) # get the size of dataset C
self.D_size = len(self.D_paths) # get the size of dataset D
btoA = self.opt.direction == 'BtoA'
input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image
output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image
self.transform_A = get_transform(self.opt, grayscale=(input_nc == 3))
self.transform_B = get_transform(self.opt, grayscale=(output_nc == 3))
self.transform_C = get_transform(self.opt, grayscale=(output_nc == 3))
self.transform_D = get_transform(self.opt, grayscale=(output_nc == 3))
# self.transform_A = get_transform(self.opt)#, grayscale=(input_nc == 1))
# self.transform_B = get_transform(self.opt)#, grayscale=(output_nc == 1))
# self.transform_C = get_transform(self.opt)#, grayscale=(output_nc == 1))
# self.transform_D = get_transform(self.opt)#, grayscale=(output_nc == 1))
def __getitem__(self, index):
domain_list = ['A_paths','B_paths','C_paths','D_paths']
domain_choice = random.randint(0,3)
if domain_list[domain_choice] == 'A_paths':
A_index = index % self.A_size
A_path = self.A_paths[A_index]
B_path = self.A_paths[random.randint(0, self.A_size - 1)]
num_rand = random.randint(0,2)
if num_rand == 0:
C_path = self.B_paths[A_index]
elif num_rand == 1:
C_path = self.C_paths[A_index]
elif num_rand == 2:
C_path = self.D_paths[A_index]
elif domain_list[domain_choice] == 'B_paths':
A_index = index % self.A_size
A_path = self.B_paths[A_index]
B_path = self.B_paths[random.randint(0, self.A_size - 1)]
num_rand = random.randint(0,2)
if num_rand == 0:
C_path = self.A_paths[A_index]
elif num_rand == 1:
C_path = self.C_paths[A_index]
elif num_rand == 2:
C_path = self.D_paths[A_index]
elif domain_list[domain_choice] == 'C_paths':
A_index = index % self.A_size
A_path = self.C_paths[A_index]
B_path = self.C_paths[random.randint(0, self.A_size - 1)]
num_rand = random.randint(0,2)
if num_rand == 0:
C_path = self.B_paths[A_index]
elif num_rand == 1:
C_path = self.A_paths[A_index]
elif num_rand == 2:
C_path = self.D_paths[A_index]
elif domain_list[domain_choice] == 'D_paths':
A_index = index % self.A_size
A_path = self.D_paths[A_index]
B_path = self.D_paths[random.randint(0, self.A_size - 1)]
num_rand = random.randint(0,2)
if num_rand == 0:
C_path = self.B_paths[A_index]
elif num_rand == 1:
C_path = self.C_paths[A_index]
elif num_rand == 2:
C_path = self.A_paths[A_index]
A_img = Image.open(A_path).convert('L')
B_img = Image.open(B_path).convert('L')
C_img = Image.open(C_path).convert('L')
A = self.transform_A(A_img)
B = self.transform_B(B_img)
C = self.transform_B(C_img)
return {'A': A, 'B': B, 'C': C, 'A_paths': A_path, 'B_paths': B_path , 'C_paths': C_path}
def __len__(self):
return max(self.A_size, self.B_size)