Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/07.dsc-mgc-v2-checkpoint.ipynb +0 -0
- .ipynb_checkpoints/07.dscv4-checkpoint.ipynb +0 -0
- .ipynb_checkpoints/Prediction-mgc-checkpoint.csv +0 -0
- .ipynb_checkpoints/Prediction-mgc-checkpoint.json +0 -0
- .ipynb_checkpoints/Test-checkpoint.ipynb +6 -0
- .ipynb_checkpoints/Test-mgc-Copy1-checkpoint.ipynb +1177 -0
- .ipynb_checkpoints/Test-mgc-f-checkpoint.ipynb +866 -0
- .ipynb_checkpoints/Testv3-checkpoint.ipynb +831 -0
- .ipynb_checkpoints/Testv4-checkpoint.ipynb +698 -0
- .ipynb_checkpoints/ds1000-train-cleaned-checkpoint.json +0 -0
- 07.dsc-mgc-v2.ipynb +0 -0
- 07.dscv4.ipynb +0 -0
- Prediction-mgc.csv +0 -0
- Prediction-mgc.json +0 -0
- Test-mgc-Copy1.ipynb +1177 -0
- Test-mgc-f.ipynb +0 -0
- Test.ipynb +725 -0
- Testv3.ipynb +831 -0
- Testv4.ipynb +866 -0
- ds1000-test-cleaned.json +0 -0
- ds1000-train-cleaned.json +0 -0
- experiments/runs/Dec11_06-38-12_114d9a2e28a3/1702276693.5141723/events.out.tfevents.1702276693.114d9a2e28a3.6724.1 +3 -0
- experiments/runs/Dec11_06-38-12_114d9a2e28a3/events.out.tfevents.1702276693.114d9a2e28a3.6724.0 +3 -0
- experiments/runs/Dec11_06-44-21_114d9a2e28a3/1702277061.7964196/events.out.tfevents.1702277061.114d9a2e28a3.9175.1 +3 -0
- experiments/runs/Dec11_06-44-21_114d9a2e28a3/events.out.tfevents.1702277061.114d9a2e28a3.9175.0 +3 -0
- experiments/runs/Dec11_06-47-03_114d9a2e28a3/1702277223.9722266/events.out.tfevents.1702277223.114d9a2e28a3.10257.1 +3 -0
- experiments/runs/Dec11_06-47-03_114d9a2e28a3/events.out.tfevents.1702277223.114d9a2e28a3.10257.0 +3 -0
- trained-model/adapter_config.json +20 -0
- trained-model/adapter_model.bin +3 -0
.ipynb_checkpoints/07.dsc-mgc-v2-checkpoint.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/07.dscv4-checkpoint.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/Prediction-mgc-checkpoint.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/Prediction-mgc-checkpoint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/Test-checkpoint.ipynb
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [],
|
3 |
+
"metadata": {},
|
4 |
+
"nbformat": 4,
|
5 |
+
"nbformat_minor": 5
|
6 |
+
}
|
.ipynb_checkpoints/Test-mgc-Copy1-checkpoint.ipynb
ADDED
@@ -0,0 +1,1177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "addd199c-097c-419d-a0f2-c3d73efb8d5d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"===================================BUG REPORT===================================\n",
|
15 |
+
"Welcome to bitsandbytes. For bug reports, please run\n",
|
16 |
+
"\n",
|
17 |
+
"python -m bitsandbytes\n",
|
18 |
+
"\n",
|
19 |
+
" and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
20 |
+
"================================================================================\n",
|
21 |
+
"bin /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so\n",
|
22 |
+
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...\n",
|
23 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so\n",
|
24 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 8.6\n",
|
25 |
+
"CUDA SETUP: Detected CUDA version 121\n",
|
26 |
+
"CUDA SETUP: Loading binary /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...\n"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "stderr",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/usr/local/nvidia/lib64'), PosixPath('/usr/local/nvidia/lib')}\n",
|
34 |
+
" warn(msg)\n",
|
35 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths...\n",
|
36 |
+
" warn(msg)\n",
|
37 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCcuY6EsmJRfLsI1l1rpDWVRhwkL7A9nzITTDbCFOX0wzshP65l/Sa54NrS1pX2uM6YiB7OvgGUm7uUKf9OBCcpd2ohFJiOkTznhDHk+D7IkFZf/VTRIHy/JZoAtzN/qBQKMOygFam1XzTMDnkehMkKvR23BgH72hzGUfYPIsq+OlStYVMhE1bncYSnC4SRucbdT5BeIsival514xsbAhCjjwPd8UHfw1cxaDq4edWjbhN8wkDU+V8i/jS/wWTZIt7pIZiAREEl/YC+Sc4FCSnb4c3p+adl5pqXrEsKygi+UmBtC1poLSXTgZOc/0kerx4jv/HB8NiH4kLsg4S2HjdFFQIB0WSV0i4KDVRE9cv18gQ7kbEv0t9Uwg4xdoMntCNS6aFDm51ufhshwQylzfSwX71Ka3mPdftfnVk81wKpIxN784FEcb7IE7HcNyomnP9N382Fg8j6pILwsKK6w4oOg8Cn2C66cySA6CNTFpK1kYBwsqdU3X8WBQUIZZNVCn4x/qRWYxrKHmdlUW8oCf9AT32eydDQWp1y0AlycA4wfbDQ8g4dtu9Rf+tBrYTztdCt5PbGy4SbwfynWysc/PuhcyaLNtuRYt3LeiCKhKJFNFST1BqjACrjkQ9kMrPSB/7j3JX9O2ncDHDQgCQIQon9BETVQZJ49EqMrusQ3/K39w== shanjay@LAPTOP-Q1PG3AE7')}\n",
|
38 |
+
" warn(msg)\n",
|
39 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('//g.notebooksg.jarvislabs.net'), PosixPath('https')}\n",
|
40 |
+
" warn(msg)\n",
|
41 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//matplotlib_inline.backend_inline')}\n",
|
42 |
+
" warn(msg)\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"import json\n",
|
48 |
+
"import os\n",
|
49 |
+
"from pprint import pprint\n",
|
50 |
+
"\n",
|
51 |
+
"import bitsandbytes as bnb\n",
|
52 |
+
"import pandas as pd\n",
|
53 |
+
"import torch\n",
|
54 |
+
"import torch.nn as nn\n",
|
55 |
+
"\n",
|
56 |
+
"import transformers\n",
|
57 |
+
"from datasets import load_dataset\n",
|
58 |
+
"from huggingface_hub import notebook_login\n",
|
59 |
+
"from peft import (\n",
|
60 |
+
" LoraConfig,\n",
|
61 |
+
" PeftConfig,\n",
|
62 |
+
" PeftModel,\n",
|
63 |
+
" get_peft_model,\n",
|
64 |
+
" prepare_model_for_kbit_training,\n",
|
65 |
+
")\n",
|
66 |
+
"from transformers import (\n",
|
67 |
+
" AutoConfig,\n",
|
68 |
+
" AutoModelForCausalLM,\n",
|
69 |
+
" AutoTokenizer,\n",
|
70 |
+
" BitsAndBytesConfig,\n",
|
71 |
+
")\n",
|
72 |
+
"import warnings\n",
|
73 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
74 |
+
"\n",
|
75 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 3,
|
81 |
+
"id": "acfb1578-a66f-44f0-8df9-1c6bcf7530ea",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [
|
84 |
+
{
|
85 |
+
"data": {
|
86 |
+
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "3edf6ee054e9464eb510d3aff9d1dc5f",
|
88 |
+
"version_major": 2,
|
89 |
+
"version_minor": 0
|
90 |
+
},
|
91 |
+
"text/plain": [
|
92 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"notebook_login()"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 4,
|
106 |
+
"id": "d2f13cac-1536-4da0-8ff7-0a0454fd0b4a",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"with open(\"ds1000-test-cleaned.json\") as json_file:\n",
|
111 |
+
" data = json.load(json_file)"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 5,
|
117 |
+
"id": "6706e68b-d525-4392-ab2c-1dff356da52d",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "stdout",
|
122 |
+
"output_type": "stream",
|
123 |
+
"text": [
|
124 |
+
"{'answer': 'import pandas as pd\\n'\n",
|
125 |
+
" '\\n'\n",
|
126 |
+
" '\\n'\n",
|
127 |
+
" 'index = range(14)\\n'\n",
|
128 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
129 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
130 |
+
" 'def g(df):\\n'\n",
|
131 |
+
" \" l = df['A'].replace(to_replace=0, method='ffill')\\n\"\n",
|
132 |
+
" \" r = df['A'].replace(to_replace=0, method='bfill')\\n\"\n",
|
133 |
+
" ' for i in range(len(df)):\\n'\n",
|
134 |
+
" \" df['A'].iloc[i] = max(l[i], r[i])\\n\"\n",
|
135 |
+
" ' return df\\n'\n",
|
136 |
+
" '\\n'\n",
|
137 |
+
" 'df = g(df.copy())\\n'\n",
|
138 |
+
" 'result = df\\n'\n",
|
139 |
+
" 'print(result)',\n",
|
140 |
+
" 'question': 'Problem:\\n'\n",
|
141 |
+
" 'I have the following dataframe:\\n'\n",
|
142 |
+
" 'index = range(14)\\n'\n",
|
143 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
144 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
145 |
+
" '\\n'\n",
|
146 |
+
" '\\n'\n",
|
147 |
+
" 'How can I fill the zeros with the maximun between previous and '\n",
|
148 |
+
" 'posterior non-zero value using pandas? Is there a fillna that is '\n",
|
149 |
+
" 'not just for \"NaN\"?. \\n'\n",
|
150 |
+
" 'The output should look like:\\n'\n",
|
151 |
+
" ' A\\n'\n",
|
152 |
+
" '0 1\\n'\n",
|
153 |
+
" '1 2\\n'\n",
|
154 |
+
" '2 2\\n'\n",
|
155 |
+
" '3 2\\n'\n",
|
156 |
+
" '4 4\\n'\n",
|
157 |
+
" '5 4\\n'\n",
|
158 |
+
" '6 6\\n'\n",
|
159 |
+
" '7 8\\n'\n",
|
160 |
+
" '8 8\\n'\n",
|
161 |
+
" '9 8\\n'\n",
|
162 |
+
" '10 8\\n'\n",
|
163 |
+
" '11 8\\n'\n",
|
164 |
+
" '12 2\\n'\n",
|
165 |
+
" '13 1'}\n"
|
166 |
+
]
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"pprint(data[0])"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 6,
|
176 |
+
"id": "9cc4983a-9a3f-485f-983f-efe2f10ce516",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"with open(\"ds1000-test-cleaned.json\", \"w\") as f:\n",
|
181 |
+
" json.dump(data, f)"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 7,
|
187 |
+
"id": "f45c3674-4eed-4ca5-8343-2184ff1e4da1",
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"data": {
|
192 |
+
"text/html": [
|
193 |
+
"<div>\n",
|
194 |
+
"<style scoped>\n",
|
195 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
196 |
+
" vertical-align: middle;\n",
|
197 |
+
" }\n",
|
198 |
+
"\n",
|
199 |
+
" .dataframe tbody tr th {\n",
|
200 |
+
" vertical-align: top;\n",
|
201 |
+
" }\n",
|
202 |
+
"\n",
|
203 |
+
" .dataframe thead th {\n",
|
204 |
+
" text-align: right;\n",
|
205 |
+
" }\n",
|
206 |
+
"</style>\n",
|
207 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
208 |
+
" <thead>\n",
|
209 |
+
" <tr style=\"text-align: right;\">\n",
|
210 |
+
" <th></th>\n",
|
211 |
+
" <th>question</th>\n",
|
212 |
+
" <th>answer</th>\n",
|
213 |
+
" </tr>\n",
|
214 |
+
" </thead>\n",
|
215 |
+
" <tbody>\n",
|
216 |
+
" <tr>\n",
|
217 |
+
" <th>0</th>\n",
|
218 |
+
" <td>Problem:\\nI have the following dataframe:\\nind...</td>\n",
|
219 |
+
" <td>import pandas as pd\\n\\n\\nindex = range(14)\\nda...</td>\n",
|
220 |
+
" </tr>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>1</th>\n",
|
223 |
+
" <td>Problem:\\ni got an issue over ranking of date ...</td>\n",
|
224 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I...</td>\n",
|
225 |
+
" </tr>\n",
|
226 |
+
" <tr>\n",
|
227 |
+
" <th>2</th>\n",
|
228 |
+
" <td>Problem:\\nI have a DataFrame like :\\n 0 ...</td>\n",
|
229 |
+
" <td>import pandas as pd\\nimport numpy as np\\n\\ndf ...</td>\n",
|
230 |
+
" </tr>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <th>3</th>\n",
|
233 |
+
" <td>Problem:\\nI have this Pandas dataframe (df):\\n...</td>\n",
|
234 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A...</td>\n",
|
235 |
+
" </tr>\n",
|
236 |
+
" <tr>\n",
|
237 |
+
" <th>4</th>\n",
|
238 |
+
" <td>Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic...</td>\n",
|
239 |
+
" <td>import pandas as pd\\n\\ndf = pd.DataFrame.from_...</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" </tbody>\n",
|
242 |
+
"</table>\n",
|
243 |
+
"</div>"
|
244 |
+
],
|
245 |
+
"text/plain": [
|
246 |
+
" question \\\n",
|
247 |
+
"0 Problem:\\nI have the following dataframe:\\nind... \n",
|
248 |
+
"1 Problem:\\ni got an issue over ranking of date ... \n",
|
249 |
+
"2 Problem:\\nI have a DataFrame like :\\n 0 ... \n",
|
250 |
+
"3 Problem:\\nI have this Pandas dataframe (df):\\n... \n",
|
251 |
+
"4 Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic... \n",
|
252 |
+
"\n",
|
253 |
+
" answer \n",
|
254 |
+
"0 import pandas as pd\\n\\n\\nindex = range(14)\\nda... \n",
|
255 |
+
"1 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I... \n",
|
256 |
+
"2 import pandas as pd\\nimport numpy as np\\n\\ndf ... \n",
|
257 |
+
"3 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A... \n",
|
258 |
+
"4 import pandas as pd\\n\\ndf = pd.DataFrame.from_... "
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"execution_count": 7,
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "execute_result"
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"pd.DataFrame(data).head()"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": 8,
|
273 |
+
"id": "6fbdd3ad-062f-4744-bb8e-1c19950adfd5",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
278 |
+
" load_in_4bit=True,\n",
|
279 |
+
" bnb_4bit_use_double_quant=True,\n",
|
280 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
281 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
282 |
+
")"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 9,
|
288 |
+
"id": "2b5ae38c-b0d2-4b9a-acde-3370130ca6e7",
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [
|
291 |
+
{
|
292 |
+
"data": {
|
293 |
+
"application/vnd.jupyter.widget-view+json": {
|
294 |
+
"model_id": "2be27a54d3e14399a41c46cd9c423399",
|
295 |
+
"version_major": 2,
|
296 |
+
"version_minor": 0
|
297 |
+
},
|
298 |
+
"text/plain": [
|
299 |
+
"Loading checkpoint shards: 0%| | 0/6 [00:00<?, ?it/s]"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
"metadata": {},
|
303 |
+
"output_type": "display_data"
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"name": "stderr",
|
307 |
+
"output_type": "stream",
|
308 |
+
"text": [
|
309 |
+
"Some weights of LlamaForCausalLM were not initialized from the model checkpoint at ise-uiuc/Magicoder-S-DS-6.7B and are newly initialized: ['model.layers.2.self_attn.rotary_emb.inv_freq', 'model.layers.6.self_attn.rotary_emb.inv_freq', 'model.layers.25.self_attn.rotary_emb.inv_freq', 'model.layers.15.self_attn.rotary_emb.inv_freq', 'model.layers.1.self_attn.rotary_emb.inv_freq', 'model.layers.7.self_attn.rotary_emb.inv_freq', 'model.layers.18.self_attn.rotary_emb.inv_freq', 'model.layers.17.self_attn.rotary_emb.inv_freq', 'model.layers.4.self_attn.rotary_emb.inv_freq', 'model.layers.30.self_attn.rotary_emb.inv_freq', 'model.layers.12.self_attn.rotary_emb.inv_freq', 'model.layers.10.self_attn.rotary_emb.inv_freq', 'model.layers.24.self_attn.rotary_emb.inv_freq', 'model.layers.23.self_attn.rotary_emb.inv_freq', 'model.layers.14.self_attn.rotary_emb.inv_freq', 'model.layers.21.self_attn.rotary_emb.inv_freq', 'model.layers.27.self_attn.rotary_emb.inv_freq', 'model.layers.8.self_attn.rotary_emb.inv_freq', 'model.layers.11.self_attn.rotary_emb.inv_freq', 'model.layers.29.self_attn.rotary_emb.inv_freq', 'model.layers.28.self_attn.rotary_emb.inv_freq', 'model.layers.20.self_attn.rotary_emb.inv_freq', 'model.layers.31.self_attn.rotary_emb.inv_freq', 'model.layers.26.self_attn.rotary_emb.inv_freq', 'model.layers.13.self_attn.rotary_emb.inv_freq', 'model.layers.3.self_attn.rotary_emb.inv_freq', 'model.layers.22.self_attn.rotary_emb.inv_freq', 'model.layers.9.self_attn.rotary_emb.inv_freq', 'model.layers.5.self_attn.rotary_emb.inv_freq', 'model.layers.19.self_attn.rotary_emb.inv_freq', 'model.layers.16.self_attn.rotary_emb.inv_freq', 'model.layers.0.self_attn.rotary_emb.inv_freq']\n",
|
310 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
311 |
+
]
|
312 |
+
}
|
313 |
+
],
|
314 |
+
"source": [
|
315 |
+
"PEFT_MODEL = \"shanjay/mgc-ds\"\n",
|
316 |
+
"\n",
|
317 |
+
"config = PeftConfig.from_pretrained(PEFT_MODEL)\n",
|
318 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
319 |
+
" config.base_model_name_or_path,\n",
|
320 |
+
" return_dict=True,\n",
|
321 |
+
" quantization_config=bnb_config,\n",
|
322 |
+
" device_map=\"auto\",\n",
|
323 |
+
" trust_remote_code=True,\n",
|
324 |
+
")\n",
|
325 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
326 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
327 |
+
"\n",
|
328 |
+
"model = PeftModel.from_pretrained(model, PEFT_MODEL)"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": 26,
|
334 |
+
"id": "7c3e35e0-f77c-4d63-8e2b-e72027341e31",
|
335 |
+
"metadata": {},
|
336 |
+
"outputs": [],
|
337 |
+
"source": [
|
338 |
+
"generation_config = model.generation_config\n",
|
339 |
+
"generation_config.max_new_tokens = 400\n",
|
340 |
+
"generation_config.temperature = 0.7\n",
|
341 |
+
"generation_config.top_p = 0.7\n",
|
342 |
+
"generation_config.num_return_sequences = 1\n",
|
343 |
+
"generation_config.pad_token_id = tokenizer.eos_token_id\n",
|
344 |
+
"generation_config.eos_token_id = tokenizer.eos_token_id"
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "code",
|
349 |
+
"execution_count": 27,
|
350 |
+
"id": "aee4385b-d855-4225-9532-4e9002322579",
|
351 |
+
"metadata": {},
|
352 |
+
"outputs": [],
|
353 |
+
"source": [
|
354 |
+
"DEVICE = \"cuda:0\""
|
355 |
+
]
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"cell_type": "code",
|
359 |
+
"execution_count": 12,
|
360 |
+
"id": "7b14a1c6-ac62-4a9c-9df9-0db50facfd7e",
|
361 |
+
"metadata": {},
|
362 |
+
"outputs": [
|
363 |
+
{
|
364 |
+
"name": "stdout",
|
365 |
+
"output_type": "stream",
|
366 |
+
"text": [
|
367 |
+
"<instruction>: How can I create a dataframe?\n",
|
368 |
+
"<output>: import pandas as pd\n",
|
369 |
+
"\n",
|
370 |
+
"\n",
|
371 |
+
"\n",
|
372 |
+
"\n",
|
373 |
+
"\n",
|
374 |
+
"\n",
|
375 |
+
"\n",
|
376 |
+
"\n",
|
377 |
+
"\n",
|
378 |
+
"\n",
|
379 |
+
"\n",
|
380 |
+
"\n",
|
381 |
+
"\n",
|
382 |
+
"\n",
|
383 |
+
"\n",
|
384 |
+
"\n",
|
385 |
+
"\n",
|
386 |
+
"\n",
|
387 |
+
"\n",
|
388 |
+
"\n",
|
389 |
+
"\n",
|
390 |
+
"\n",
|
391 |
+
"\n",
|
392 |
+
"\n",
|
393 |
+
"\n",
|
394 |
+
"\n",
|
395 |
+
"\n",
|
396 |
+
"\n",
|
397 |
+
"\n",
|
398 |
+
"\n",
|
399 |
+
"\n",
|
400 |
+
"\n",
|
401 |
+
"\n",
|
402 |
+
"\n",
|
403 |
+
"\n",
|
404 |
+
"\n",
|
405 |
+
"\n",
|
406 |
+
"\n",
|
407 |
+
"\n",
|
408 |
+
"\n",
|
409 |
+
"\n",
|
410 |
+
"\n",
|
411 |
+
"\n",
|
412 |
+
"\n",
|
413 |
+
"\n",
|
414 |
+
"\n",
|
415 |
+
"\n",
|
416 |
+
"\n",
|
417 |
+
"\n",
|
418 |
+
"\n",
|
419 |
+
"\n",
|
420 |
+
"\n",
|
421 |
+
"\n",
|
422 |
+
"\n",
|
423 |
+
"\n",
|
424 |
+
"\n",
|
425 |
+
"\n",
|
426 |
+
"\n",
|
427 |
+
"\n",
|
428 |
+
"\n",
|
429 |
+
"\n",
|
430 |
+
"\n",
|
431 |
+
"\n",
|
432 |
+
"\n",
|
433 |
+
"\n",
|
434 |
+
"\n",
|
435 |
+
"\n",
|
436 |
+
"\n",
|
437 |
+
"\n",
|
438 |
+
"\n",
|
439 |
+
"\n",
|
440 |
+
"\n",
|
441 |
+
"\n",
|
442 |
+
"\n",
|
443 |
+
"\n",
|
444 |
+
"\n",
|
445 |
+
"\n",
|
446 |
+
"\n",
|
447 |
+
"\n",
|
448 |
+
"\n",
|
449 |
+
"\n",
|
450 |
+
"\n",
|
451 |
+
"\n",
|
452 |
+
"\n",
|
453 |
+
"\n",
|
454 |
+
"\n",
|
455 |
+
"\n",
|
456 |
+
"\n",
|
457 |
+
"\n",
|
458 |
+
"\n",
|
459 |
+
"\n",
|
460 |
+
"\n",
|
461 |
+
"\n",
|
462 |
+
"\n",
|
463 |
+
"\n",
|
464 |
+
"\n",
|
465 |
+
"\n",
|
466 |
+
"\n",
|
467 |
+
"\n",
|
468 |
+
"\n",
|
469 |
+
"\n",
|
470 |
+
"\n",
|
471 |
+
"\n",
|
472 |
+
"\n",
|
473 |
+
"\n",
|
474 |
+
"\n",
|
475 |
+
"\n",
|
476 |
+
"\n",
|
477 |
+
"\n",
|
478 |
+
"\n",
|
479 |
+
"\n",
|
480 |
+
"\n",
|
481 |
+
"\n",
|
482 |
+
"\n",
|
483 |
+
"\n",
|
484 |
+
"\n",
|
485 |
+
"\n",
|
486 |
+
"\n",
|
487 |
+
"\n",
|
488 |
+
"\n",
|
489 |
+
"\n",
|
490 |
+
"\n",
|
491 |
+
"\n",
|
492 |
+
"\n",
|
493 |
+
"\n",
|
494 |
+
"\n",
|
495 |
+
"\n",
|
496 |
+
"\n",
|
497 |
+
"\n",
|
498 |
+
"\n",
|
499 |
+
"\n",
|
500 |
+
"\n",
|
501 |
+
"\n",
|
502 |
+
"\n",
|
503 |
+
"\n",
|
504 |
+
"\n",
|
505 |
+
"\n",
|
506 |
+
"\n",
|
507 |
+
"\n",
|
508 |
+
"\n",
|
509 |
+
"\n",
|
510 |
+
"\n",
|
511 |
+
"\n",
|
512 |
+
"\n",
|
513 |
+
"\n",
|
514 |
+
"\n",
|
515 |
+
"\n",
|
516 |
+
"\n",
|
517 |
+
"\n",
|
518 |
+
"\n",
|
519 |
+
"\n",
|
520 |
+
"\n",
|
521 |
+
"\n",
|
522 |
+
"\n",
|
523 |
+
"\n",
|
524 |
+
"\n",
|
525 |
+
"\n",
|
526 |
+
"\n",
|
527 |
+
"\n",
|
528 |
+
"\n",
|
529 |
+
"\n",
|
530 |
+
"\n",
|
531 |
+
"\n",
|
532 |
+
"\n",
|
533 |
+
"\n",
|
534 |
+
"\n",
|
535 |
+
"\n",
|
536 |
+
"\n",
|
537 |
+
"\n",
|
538 |
+
"\n",
|
539 |
+
"\n",
|
540 |
+
"\n",
|
541 |
+
"\n",
|
542 |
+
"\n",
|
543 |
+
"\n",
|
544 |
+
"\n",
|
545 |
+
"\n",
|
546 |
+
"\n",
|
547 |
+
"\n",
|
548 |
+
"\n",
|
549 |
+
"\n",
|
550 |
+
"\n",
|
551 |
+
"\n",
|
552 |
+
"\n",
|
553 |
+
"\n",
|
554 |
+
"\n",
|
555 |
+
"\n",
|
556 |
+
"\n",
|
557 |
+
"\n",
|
558 |
+
"\n",
|
559 |
+
"\n",
|
560 |
+
"\n",
|
561 |
+
"\n",
|
562 |
+
"\n",
|
563 |
+
"CPU times: user 26.5 s, sys: 177 ms, total: 26.7 s\n",
|
564 |
+
"Wall time: 26.7 s\n"
|
565 |
+
]
|
566 |
+
}
|
567 |
+
],
|
568 |
+
"source": [
|
569 |
+
"%%time\n",
|
570 |
+
"prompt = f\"\"\"\n",
|
571 |
+
"<instruction>: How can I create a dataframe?\n",
|
572 |
+
"<output>:\n",
|
573 |
+
"\"\"\".strip()\n",
|
574 |
+
"\n",
|
575 |
+
"encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
576 |
+
"with torch.inference_mode():\n",
|
577 |
+
" outputs = model.generate(\n",
|
578 |
+
" input_ids=encoding.input_ids,\n",
|
579 |
+
" attention_mask=encoding.attention_mask,\n",
|
580 |
+
" generation_config=generation_config,\n",
|
581 |
+
" )\n",
|
582 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
583 |
+
]
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"cell_type": "code",
|
587 |
+
"execution_count": 28,
|
588 |
+
"id": "93c95988-c563-4871-974d-004bf73fbce8",
|
589 |
+
"metadata": {},
|
590 |
+
"outputs": [],
|
591 |
+
"source": [
|
592 |
+
"def generate_response(question: str) -> str:\n",
|
593 |
+
" prompt = f\"\"\"\n",
|
594 |
+
"<instruction>: {question}\n",
|
595 |
+
"<output>:\n",
|
596 |
+
"\"\"\".strip()\n",
|
597 |
+
" encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
598 |
+
" with torch.inference_mode():\n",
|
599 |
+
" outputs = model.generate(\n",
|
600 |
+
" input_ids=encoding.input_ids,\n",
|
601 |
+
" attention_mask=encoding.attention_mask,\n",
|
602 |
+
" generation_config=generation_config,\n",
|
603 |
+
" )\n",
|
604 |
+
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
605 |
+
"\n",
|
606 |
+
" assistant_start = \"<output>:\"\n",
|
607 |
+
" response_start = response.find(assistant_start)\n",
|
608 |
+
" return response[response_start + len(assistant_start) :].strip()"
|
609 |
+
]
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"cell_type": "code",
|
613 |
+
"execution_count": 29,
|
614 |
+
"id": "8a9a9b87-193b-4bed-8ef1-57944d931958",
|
615 |
+
"metadata": {},
|
616 |
+
"outputs": [
|
617 |
+
{
|
618 |
+
"name": "stdout",
|
619 |
+
"output_type": "stream",
|
620 |
+
"text": [
|
621 |
+
"import pandas as pd\n"
|
622 |
+
]
|
623 |
+
}
|
624 |
+
],
|
625 |
+
"source": [
|
626 |
+
"prompt = \"How can I create a dataframe?\"\n",
|
627 |
+
"print(generate_response(prompt))"
|
628 |
+
]
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"cell_type": "code",
|
632 |
+
"execution_count": 30,
|
633 |
+
"id": "4658f305-b7c6-432c-ac0c-f62bd79e9ad5",
|
634 |
+
"metadata": {},
|
635 |
+
"outputs": [
|
636 |
+
{
|
637 |
+
"name": "stdout",
|
638 |
+
"output_type": "stream",
|
639 |
+
"text": [
|
640 |
+
"import pandas as pd\n",
|
641 |
+
"\n",
|
642 |
+
"\n",
|
643 |
+
"\n",
|
644 |
+
"\n",
|
645 |
+
"\n",
|
646 |
+
"df1 = pd.DataFrame({'A': ['A', 'B', 'C', 'D'],\n",
|
647 |
+
" 'B': [1, 2, 3, 4]})\n",
|
648 |
+
"df2 = pd.DataFrame({'A': ['A', 'B', 'C', 'E'],\n",
|
649 |
+
" 'B': [1, 2, 3, 5]})\n",
|
650 |
+
"# merge df1 and df2 on column 'A'\n",
|
651 |
+
"# SOLUTION START\n",
|
652 |
+
"\n",
|
653 |
+
"<output>: import pandas as pd\n",
|
654 |
+
"\n",
|
655 |
+
"\n",
|
656 |
+
"\n",
|
657 |
+
"\n",
|
658 |
+
"\n",
|
659 |
+
"df1 = pd.DataFrame({'A': ['A', 'B', 'C', 'D'],\n",
|
660 |
+
" 'B': [1, 2, 3, 4]})\n",
|
661 |
+
"df2 = pd.DataFrame({'A': ['A', 'B', 'C', 'E'],\n",
|
662 |
+
" 'B': [1, 2, 3, 5]})\n",
|
663 |
+
"# merge df1 and df2 on column 'A'\n",
|
664 |
+
"result = pd.merge(df1, df2, on='A')\n",
|
665 |
+
"print(result)\n"
|
666 |
+
]
|
667 |
+
}
|
668 |
+
],
|
669 |
+
"source": [
|
670 |
+
"prompt = \"How to merge two dataframes?\"\n",
|
671 |
+
"print(generate_response(prompt))"
|
672 |
+
]
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"cell_type": "code",
|
676 |
+
"execution_count": 16,
|
677 |
+
"id": "0e9ed231-4a62-4331-94df-f3bcd601f138",
|
678 |
+
"metadata": {},
|
679 |
+
"outputs": [
|
680 |
+
{
|
681 |
+
"name": "stdout",
|
682 |
+
"output_type": "stream",
|
683 |
+
"text": [
|
684 |
+
"import pandas as pd\n",
|
685 |
+
"\n",
|
686 |
+
"\n",
|
687 |
+
"name = ['joy', 'shan']\n",
|
688 |
+
"roll_no = [1, 2]\n",
|
689 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
690 |
+
"print(df)\n"
|
691 |
+
]
|
692 |
+
}
|
693 |
+
],
|
694 |
+
"source": [
|
695 |
+
"prompt = \"given two arrays name=['joy','shan'], roll_no=[1,2]. put these array in a dataframe ?\"\n",
|
696 |
+
"print(generate_response(prompt))"
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"cell_type": "code",
|
701 |
+
"execution_count": 31,
|
702 |
+
"id": "381ba5c0-276d-411e-a8d5-9f010528433d",
|
703 |
+
"metadata": {},
|
704 |
+
"outputs": [
|
705 |
+
{
|
706 |
+
"name": "stdout",
|
707 |
+
"output_type": "stream",
|
708 |
+
"text": [
|
709 |
+
"import matplotlib.pyplot as plt\n",
|
710 |
+
"\n",
|
711 |
+
"x = [1, 2, 3, 4, 5]\n",
|
712 |
+
"y = [1, 2, 3, 4, 5]\n",
|
713 |
+
"\n",
|
714 |
+
"# plot all types of plots in matplotlib\n",
|
715 |
+
"# SOLUTION START\n",
|
716 |
+
"\n",
|
717 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
718 |
+
"\n",
|
719 |
+
"x = [1, 2, 3, 4, 5]\n",
|
720 |
+
"y = [1, 2, 3, 4, 5]\n",
|
721 |
+
"\n",
|
722 |
+
"# plot all types of plots in matplotlib\n",
|
723 |
+
"plt.plot(x, y, label=\"plot\")\n",
|
724 |
+
"plt.scatter(x, y, label=\"scatter\")\n",
|
725 |
+
"plt.bar(x, y, label=\"bar\")\n",
|
726 |
+
"plt.hist(x, y, label=\"hist\")\n",
|
727 |
+
"plt.boxplot(x, y, label=\"boxplot\")\n",
|
728 |
+
"plt.show()\n",
|
729 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
730 |
+
"\n",
|
731 |
+
"x = [1, 2, 3, 4, 5]\n",
|
732 |
+
"y = [1, 2, 3, 4, 5]\n",
|
733 |
+
"\n",
|
734 |
+
"# plot all types of plots in matplotlib\n",
|
735 |
+
"plt.plot(x, y, label=\"plot\")\n",
|
736 |
+
"plt.scatter(x, y, label=\"scatter\")\n",
|
737 |
+
"plt.bar(x, y, label=\"bar\")\n",
|
738 |
+
"plt.hist(x, y, label=\"hist\")\n",
|
739 |
+
"plt.boxplot(x, y, label=\"boxplot\")\n",
|
740 |
+
"plt.show()\n",
|
741 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
742 |
+
"\n",
|
743 |
+
"x = [1, 2, 3, 4, 5]\n"
|
744 |
+
]
|
745 |
+
}
|
746 |
+
],
|
747 |
+
"source": [
|
748 |
+
"prompt = \"can you plot all types of plots in matplotlib?\"\n",
|
749 |
+
"print(generate_response(prompt))"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"cell_type": "code",
|
754 |
+
"execution_count": 32,
|
755 |
+
"id": "6864c3c7-b721-48ca-8943-dcff9838f7d2",
|
756 |
+
"metadata": {},
|
757 |
+
"outputs": [
|
758 |
+
{
|
759 |
+
"name": "stdout",
|
760 |
+
"output_type": "stream",
|
761 |
+
"text": [
|
762 |
+
"import pandas as pd\n",
|
763 |
+
"\n",
|
764 |
+
"\n",
|
765 |
+
"df = pd.DataFrame({'ID': ['01', '01', '01', '02', '02'],\n",
|
766 |
+
" 'TIME': ['2018-07-11 11:12:20', '2018-07-12 12:00:23', '2018-07-13 12:00:00', '2019-09-11 11:00:00', '2019-09-12 12:00:00']})\n",
|
767 |
+
"def g(df):\n",
|
768 |
+
" df['TIME'] = pd.to_datetime(df['TIME'])\n",
|
769 |
+
" df['RANK'] = df.groupby('ID')['TIME'].rank(ascending=True)\n",
|
770 |
+
" return df\n",
|
771 |
+
"\n",
|
772 |
+
"df = g(df.copy())\n",
|
773 |
+
"print(df)\n",
|
774 |
+
"<output>: import pandas as pd\n",
|
775 |
+
"\n",
|
776 |
+
"\n",
|
777 |
+
"df = pd.DataFrame({'ID': ['01', '01', '01', '02', '02'],\n",
|
778 |
+
" 'TIME': ['2018-07-11 11:12:20', '2018-07-12 12:00:23', '2018-07-13 12:00:00', '2019-09-11 11:00:00', '2019-09-12 12:00:00']})\n",
|
779 |
+
"def g(df):\n",
|
780 |
+
" df['TIME'] = pd.to_datetime(df['TIME'])\n"
|
781 |
+
]
|
782 |
+
}
|
783 |
+
],
|
784 |
+
"source": [
|
785 |
+
"prompt = \"\"\"Problem:\n",
|
786 |
+
"i got an issue over ranking of date times. Lets say i have following table.\n",
|
787 |
+
"ID TIME\n",
|
788 |
+
"01 2018-07-11 11:12:20\n",
|
789 |
+
"01 2018-07-12 12:00:23\n",
|
790 |
+
"01 2018-07-13 12:00:00\n",
|
791 |
+
"02 2019-09-11 11:00:00\n",
|
792 |
+
"02 2019-09-12 12:00:00\n",
|
793 |
+
"\n",
|
794 |
+
"\n",
|
795 |
+
"and i want to add another column to rank the table by time for each id and group. I used \n",
|
796 |
+
"df['RANK'] = data.groupby('ID')['TIME'].rank(ascending=True)\n",
|
797 |
+
"\n",
|
798 |
+
"\n",
|
799 |
+
"but get an error:\n",
|
800 |
+
"'NoneType' object is not callable\n",
|
801 |
+
"\n",
|
802 |
+
"\n",
|
803 |
+
"If i replace datetime to numbers, it works.... any solutions?\n",
|
804 |
+
"\"\"\"\n",
|
805 |
+
"print(generate_response(prompt))"
|
806 |
+
]
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"cell_type": "code",
|
810 |
+
"execution_count": 33,
|
811 |
+
"id": "7fa02929-5c65-4aa6-81ce-9c51879e7535",
|
812 |
+
"metadata": {},
|
813 |
+
"outputs": [
|
814 |
+
{
|
815 |
+
"name": "stdout",
|
816 |
+
"output_type": "stream",
|
817 |
+
"text": [
|
818 |
+
"import pandas as pd\n",
|
819 |
+
"\n",
|
820 |
+
"\n",
|
821 |
+
"index = range(14)\n",
|
822 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
823 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
824 |
+
"def g(df):\n",
|
825 |
+
" df['A'] = df['A'].replace(0, np.nan)\n",
|
826 |
+
" df['A'] = df['A'].fillna(method='ffill')\n",
|
827 |
+
" df['A'] = df['A'].fillna(method='bfill')\n",
|
828 |
+
" return df\n",
|
829 |
+
"\n",
|
830 |
+
"df = g(df.copy())\n",
|
831 |
+
"result = df\n",
|
832 |
+
"print(result)\n",
|
833 |
+
"<output>: import pandas as pd\n",
|
834 |
+
"import numpy as np\n",
|
835 |
+
"\n",
|
836 |
+
"\n",
|
837 |
+
"index = range(14)\n",
|
838 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
839 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
840 |
+
"def g(df):\n",
|
841 |
+
" df['A'] = df['A'].replace(0, np.nan)\n",
|
842 |
+
" df['A'] = df['A'].fillna(method='ffill')\n",
|
843 |
+
" df['A'] = df['A'].fillna(method='bfill')\n",
|
844 |
+
" return df\n",
|
845 |
+
"\n",
|
846 |
+
"df = g(df.copy())\n",
|
847 |
+
"result = df\n",
|
848 |
+
"print(result)\n",
|
849 |
+
"<output>: import pandas as pd\n",
|
850 |
+
"import numpy as np\n",
|
851 |
+
"\n",
|
852 |
+
"\n",
|
853 |
+
"index = range(14)\n",
|
854 |
+
"data = [1, 0, 0, 2, 0, 4\n"
|
855 |
+
]
|
856 |
+
}
|
857 |
+
],
|
858 |
+
"source": [
|
859 |
+
"prompt = \"\"\"Problem:\n",
|
860 |
+
"I have the following dataframe:\n",
|
861 |
+
"index = range(14)\n",
|
862 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
863 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
864 |
+
"\n",
|
865 |
+
"\n",
|
866 |
+
"How can I fill the zeros with the maximun between previous and posterior non-zero value using pandas? Is there a fillna that is not just for \"NaN\"?. \n",
|
867 |
+
"The output should look like:\n",
|
868 |
+
" A\n",
|
869 |
+
"0 1\n",
|
870 |
+
"1 2\n",
|
871 |
+
"2 2\n",
|
872 |
+
"3 2\n",
|
873 |
+
"4 4\n",
|
874 |
+
"5 4\n",
|
875 |
+
"6 6\n",
|
876 |
+
"7 8\n",
|
877 |
+
"8 8\n",
|
878 |
+
"9 8\n",
|
879 |
+
"10 8\n",
|
880 |
+
"11 8\n",
|
881 |
+
"12 2\n",
|
882 |
+
"13 1\n",
|
883 |
+
"\"\"\"\n",
|
884 |
+
"\n",
|
885 |
+
"print(generate_response(prompt))"
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "code",
|
890 |
+
"execution_count": 34,
|
891 |
+
"id": "255cc021-5f5e-46af-a75e-a435b9629cdf",
|
892 |
+
"metadata": {},
|
893 |
+
"outputs": [
|
894 |
+
{
|
895 |
+
"name": "stdout",
|
896 |
+
"output_type": "stream",
|
897 |
+
"text": [
|
898 |
+
"Problem:\n",
|
899 |
+
"My sample df has four columns with NaN values. The goal is to concatenate all the keywords rows while excluding the NaN values.\n",
|
900 |
+
"import pandas as pd\n",
|
901 |
+
"import numpy as np\n",
|
902 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
903 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
904 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
905 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
906 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
907 |
+
"\n",
|
908 |
+
"\n",
|
909 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3\n",
|
910 |
+
"0 Hu Tao a d NaN f\n",
|
911 |
+
"1 Zhongli NaN e NaN NaN\n",
|
912 |
+
"2 Xingqiu c NaN b g\n",
|
913 |
+
"\n",
|
914 |
+
"\n",
|
915 |
+
"Want to accomplish the following:\n",
|
916 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3 keywords_all\n",
|
917 |
+
"0 Hu Tao a d NaN f a-d-f\n",
|
918 |
+
"1 Zhongli NaN e NaN NaN e\n",
|
919 |
+
"2 Xingqiu c NaN b g c-b-g\n",
|
920 |
+
"\n",
|
921 |
+
"\n",
|
922 |
+
"Pseudo code:\n",
|
923 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
924 |
+
"df[\"keywords_all\"] = df[\"keywords_all\"].apply(lambda cols: \"-\".join(cols), axis=1)\n",
|
925 |
+
"\n",
|
926 |
+
"\n",
|
927 |
+
"I know I can use \"-\".join() to get the exact result, but I am unsure how to pass the column names into the function.\n"
|
928 |
+
]
|
929 |
+
}
|
930 |
+
],
|
931 |
+
"source": [
|
932 |
+
"print(data[5]['question'])"
|
933 |
+
]
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"cell_type": "code",
|
937 |
+
"execution_count": 35,
|
938 |
+
"id": "1c5841e9-4331-4185-a7ad-7dd00d4e13b1",
|
939 |
+
"metadata": {},
|
940 |
+
"outputs": [
|
941 |
+
{
|
942 |
+
"name": "stdout",
|
943 |
+
"output_type": "stream",
|
944 |
+
"text": [
|
945 |
+
"import pandas as pd\n",
|
946 |
+
"import numpy as np\n",
|
947 |
+
"\n",
|
948 |
+
"\n",
|
949 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
950 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
951 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
952 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
953 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
954 |
+
"import numpy as np\n",
|
955 |
+
"def g(df):\n",
|
956 |
+
" df[\"keywords_all\"] = df.filter(like='keyword').apply(lambda x: '-'.join(x.dropna()), axis=1)\n",
|
957 |
+
" return df\n",
|
958 |
+
"\n",
|
959 |
+
"df = g(df.copy())\n",
|
960 |
+
"result = df\n",
|
961 |
+
"print(result)\n"
|
962 |
+
]
|
963 |
+
}
|
964 |
+
],
|
965 |
+
"source": [
|
966 |
+
"print(data[5]['answer'])"
|
967 |
+
]
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"cell_type": "code",
|
971 |
+
"execution_count": 36,
|
972 |
+
"id": "090e98c3-78db-4e33-af4b-01c6e1fc23d0",
|
973 |
+
"metadata": {},
|
974 |
+
"outputs": [
|
975 |
+
{
|
976 |
+
"name": "stdout",
|
977 |
+
"output_type": "stream",
|
978 |
+
"text": [
|
979 |
+
"import pandas as pd\n",
|
980 |
+
"import numpy as np\n",
|
981 |
+
"\n",
|
982 |
+
"\n",
|
983 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
984 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
985 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
986 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
987 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
988 |
+
"\n",
|
989 |
+
"\n",
|
990 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
991 |
+
"def f(cols):\n",
|
992 |
+
" return \"-\".join(cols)\n",
|
993 |
+
"\n",
|
994 |
+
"\n",
|
995 |
+
"df[\"keywords_all\"] = df.apply(lambda row: f(row[cols]), axis=1)\n",
|
996 |
+
"\n",
|
997 |
+
"\n",
|
998 |
+
"print(df)\n",
|
999 |
+
"<output>: import pandas as pd\n",
|
1000 |
+
"import numpy as np\n",
|
1001 |
+
"\n",
|
1002 |
+
"\n",
|
1003 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
1004 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
1005 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
1006 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
1007 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
1008 |
+
"\n",
|
1009 |
+
"\n",
|
1010 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
1011 |
+
"def f(cols):\n",
|
1012 |
+
" return \"-\".join(cols)\n",
|
1013 |
+
"\n",
|
1014 |
+
"\n",
|
1015 |
+
"df[\"keywords_all\"] = df.apply(lambda\n"
|
1016 |
+
]
|
1017 |
+
}
|
1018 |
+
],
|
1019 |
+
"source": [
|
1020 |
+
"prompt = data[5]['question']\n",
|
1021 |
+
"print(generate_response(prompt))"
|
1022 |
+
]
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"cell_type": "code",
|
1026 |
+
"execution_count": 37,
|
1027 |
+
"id": "29609669-1ac7-4f6a-b0e3-64a3bf7a6545",
|
1028 |
+
"metadata": {},
|
1029 |
+
"outputs": [
|
1030 |
+
{
|
1031 |
+
"name": "stdout",
|
1032 |
+
"output_type": "stream",
|
1033 |
+
"text": [
|
1034 |
+
"import pandas as pd\n",
|
1035 |
+
"\n",
|
1036 |
+
"\n",
|
1037 |
+
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1038 |
+
" 'B': [None, 2, 3, 4, 5],\n",
|
1039 |
+
" 'C': [1, 2, 3, 4, 5]})\n",
|
1040 |
+
"df = df.dropna()\n",
|
1041 |
+
"print(df)\n",
|
1042 |
+
"<output>: import pandas as pd\n",
|
1043 |
+
"\n",
|
1044 |
+
"\n",
|
1045 |
+
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1046 |
+
" 'B': [None, 2, 3, 4, 5],\n",
|
1047 |
+
" 'C': [1, 2, 3, 4, 5]})\n",
|
1048 |
+
"df = df.dropna()\n",
|
1049 |
+
"print(df)\n",
|
1050 |
+
"<output>: import pandas as pd\n",
|
1051 |
+
"\n",
|
1052 |
+
"\n",
|
1053 |
+
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1054 |
+
" 'B': [None, 2, 3, 4, 5],\n",
|
1055 |
+
" 'C': [1, 2, 3, 4, 5]})\n",
|
1056 |
+
"df = df.dropna()\n",
|
1057 |
+
"print(df)\n",
|
1058 |
+
"<output>: import pandas as pd\n",
|
1059 |
+
"\n",
|
1060 |
+
"\n",
|
1061 |
+
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1062 |
+
" 'B': [None, 2, 3, 4, 5],\n",
|
1063 |
+
" 'C': [1, 2, 3, 4, 5]})\n",
|
1064 |
+
"df = df.dropna()\n",
|
1065 |
+
"print(df)\n",
|
1066 |
+
"<output>: import pandas as pd\n",
|
1067 |
+
"\n",
|
1068 |
+
"\n",
|
1069 |
+
"df = pd.DataFrame({'A': [1, 2, None,\n"
|
1070 |
+
]
|
1071 |
+
}
|
1072 |
+
],
|
1073 |
+
"source": [
|
1074 |
+
"prompt = \"How to remove null valued rows?\"\n",
|
1075 |
+
"print(generate_response(prompt))"
|
1076 |
+
]
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"cell_type": "code",
|
1080 |
+
"execution_count": 39,
|
1081 |
+
"id": "5ca085f6-30fc-4e50-a436-673f3baa75af",
|
1082 |
+
"metadata": {},
|
1083 |
+
"outputs": [
|
1084 |
+
{
|
1085 |
+
"name": "stdout",
|
1086 |
+
"output_type": "stream",
|
1087 |
+
"text": [
|
1088 |
+
"import numpy as np\n",
|
1089 |
+
"import pandas as pd\n",
|
1090 |
+
"import matplotlib.pyplot as plt\n",
|
1091 |
+
"import seaborn as sns\n",
|
1092 |
+
"import sklearn\n",
|
1093 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
1094 |
+
"from sklearn.model_selection import train_test_split\n",
|
1095 |
+
"\n",
|
1096 |
+
"\n",
|
1097 |
+
"X, y = load_data()\n",
|
1098 |
+
"\n",
|
1099 |
+
"# Split the data into training and test sets\n",
|
1100 |
+
"# Split the data into training and test sets\n",
|
1101 |
+
"# Split the data into training and test sets\n",
|
1102 |
+
"# Train a Logistic Regression model on the training data\n",
|
1103 |
+
"# Print the accuracy of the model on the test data\n",
|
1104 |
+
"# SOLUTION START\n",
|
1105 |
+
"\n",
|
1106 |
+
"<output>: import numpy as np\n",
|
1107 |
+
"import pandas as pd\n",
|
1108 |
+
"import matplotlib.pyplot as plt\n",
|
1109 |
+
"import seaborn as sns\n",
|
1110 |
+
"import sklearn\n",
|
1111 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
1112 |
+
"from sklearn.model_selection import train_test_split\n",
|
1113 |
+
"\n",
|
1114 |
+
"\n",
|
1115 |
+
"X, y = load_data()\n",
|
1116 |
+
"\n",
|
1117 |
+
"# Split the data into training and test sets\n",
|
1118 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
1119 |
+
"# Train a Logistic Regression model on the training data\n",
|
1120 |
+
"model = LogisticRegression()\n",
|
1121 |
+
"model.fit(X_train, y_train)\n",
|
1122 |
+
"# Print the accuracy of the model on the test data\n",
|
1123 |
+
"print(model.score(X_test, y_test))\n",
|
1124 |
+
"<output>: import numpy as np\n",
|
1125 |
+
"import pandas as pd\n",
|
1126 |
+
"import matplotlib.pyplot as plt\n",
|
1127 |
+
"import seaborn as sns\n",
|
1128 |
+
"import sklearn\n",
|
1129 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
1130 |
+
"from sklearn.model_selection import train_test_split\n"
|
1131 |
+
]
|
1132 |
+
}
|
1133 |
+
],
|
1134 |
+
"source": [
|
1135 |
+
"prompt = \"How to train a Logistic Regression model?\"\n",
|
1136 |
+
"print(generate_response(prompt))"
|
1137 |
+
]
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"cell_type": "code",
|
1141 |
+
"execution_count": null,
|
1142 |
+
"id": "146527ff-5d37-42c7-b06b-45c1aa224d17",
|
1143 |
+
"metadata": {},
|
1144 |
+
"outputs": [],
|
1145 |
+
"source": []
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"cell_type": "code",
|
1149 |
+
"execution_count": null,
|
1150 |
+
"id": "84f671f3-7bd6-4a7c-81e9-758052b424cf",
|
1151 |
+
"metadata": {},
|
1152 |
+
"outputs": [],
|
1153 |
+
"source": []
|
1154 |
+
}
|
1155 |
+
],
|
1156 |
+
"metadata": {
|
1157 |
+
"kernelspec": {
|
1158 |
+
"display_name": "Python 3 (ipykernel)",
|
1159 |
+
"language": "python",
|
1160 |
+
"name": "python3"
|
1161 |
+
},
|
1162 |
+
"language_info": {
|
1163 |
+
"codemirror_mode": {
|
1164 |
+
"name": "ipython",
|
1165 |
+
"version": 3
|
1166 |
+
},
|
1167 |
+
"file_extension": ".py",
|
1168 |
+
"mimetype": "text/x-python",
|
1169 |
+
"name": "python",
|
1170 |
+
"nbconvert_exporter": "python",
|
1171 |
+
"pygments_lexer": "ipython3",
|
1172 |
+
"version": "3.10.13"
|
1173 |
+
}
|
1174 |
+
},
|
1175 |
+
"nbformat": 4,
|
1176 |
+
"nbformat_minor": 5
|
1177 |
+
}
|
.ipynb_checkpoints/Test-mgc-f-checkpoint.ipynb
ADDED
@@ -0,0 +1,866 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "addd199c-097c-419d-a0f2-c3d73efb8d5d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"===================================BUG REPORT===================================\n",
|
15 |
+
"Welcome to bitsandbytes. For bug reports, please run\n",
|
16 |
+
"\n",
|
17 |
+
"python -m bitsandbytes\n",
|
18 |
+
"\n",
|
19 |
+
" and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
20 |
+
"================================================================================\n",
|
21 |
+
"bin /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so\n",
|
22 |
+
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...\n",
|
23 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so\n",
|
24 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 8.6\n",
|
25 |
+
"CUDA SETUP: Detected CUDA version 121\n",
|
26 |
+
"CUDA SETUP: Loading binary /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...\n"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "stderr",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/usr/local/nvidia/lib'), PosixPath('/usr/local/nvidia/lib64')}\n",
|
34 |
+
" warn(msg)\n",
|
35 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths...\n",
|
36 |
+
" warn(msg)\n",
|
37 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCcuY6EsmJRfLsI1l1rpDWVRhwkL7A9nzITTDbCFOX0wzshP65l/Sa54NrS1pX2uM6YiB7OvgGUm7uUKf9OBCcpd2ohFJiOkTznhDHk+D7IkFZf/VTRIHy/JZoAtzN/qBQKMOygFam1XzTMDnkehMkKvR23BgH72hzGUfYPIsq+OlStYVMhE1bncYSnC4SRucbdT5BeIsival514xsbAhCjjwPd8UHfw1cxaDq4edWjbhN8wkDU+V8i/jS/wWTZIt7pIZiAREEl/YC+Sc4FCSnb4c3p+adl5pqXrEsKygi+UmBtC1poLSXTgZOc/0kerx4jv/HB8NiH4kLsg4S2HjdFFQIB0WSV0i4KDVRE9cv18gQ7kbEv0t9Uwg4xdoMntCNS6aFDm51ufhshwQylzfSwX71Ka3mPdftfnVk81wKpIxN784FEcb7IE7HcNyomnP9N382Fg8j6pILwsKK6w4oOg8Cn2C66cySA6CNTFpK1kYBwsqdU3X8WBQUIZZNVCn4x/qRWYxrKHmdlUW8oCf9AT32eydDQWp1y0AlycA4wfbDQ8g4dtu9Rf+tBrYTztdCt5PbGy4SbwfynWysc/PuhcyaLNtuRYt3LeiCKhKJFNFST1BqjACrjkQ9kMrPSB/7j3JX9O2ncDHDQgCQIQon9BETVQZJ49EqMrusQ3/K39w== shanjay@LAPTOP-Q1PG3AE7')}\n",
|
38 |
+
" warn(msg)\n",
|
39 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('https'), PosixPath('//g.notebooksg.jarvislabs.net')}\n",
|
40 |
+
" warn(msg)\n",
|
41 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//matplotlib_inline.backend_inline')}\n",
|
42 |
+
" warn(msg)\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"import json\n",
|
48 |
+
"import os\n",
|
49 |
+
"from pprint import pprint\n",
|
50 |
+
"\n",
|
51 |
+
"import bitsandbytes as bnb\n",
|
52 |
+
"import pandas as pd\n",
|
53 |
+
"import torch\n",
|
54 |
+
"import torch.nn as nn\n",
|
55 |
+
"\n",
|
56 |
+
"import transformers\n",
|
57 |
+
"from datasets import load_dataset\n",
|
58 |
+
"from huggingface_hub import notebook_login\n",
|
59 |
+
"from peft import (\n",
|
60 |
+
" LoraConfig,\n",
|
61 |
+
" PeftConfig,\n",
|
62 |
+
" PeftModel,\n",
|
63 |
+
" get_peft_model,\n",
|
64 |
+
" prepare_model_for_kbit_training,\n",
|
65 |
+
")\n",
|
66 |
+
"from transformers import (\n",
|
67 |
+
" AutoConfig,\n",
|
68 |
+
" AutoModelForCausalLM,\n",
|
69 |
+
" AutoTokenizer,\n",
|
70 |
+
" BitsAndBytesConfig,\n",
|
71 |
+
")\n",
|
72 |
+
"import warnings\n",
|
73 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
74 |
+
"\n",
|
75 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 2,
|
81 |
+
"id": "acfb1578-a66f-44f0-8df9-1c6bcf7530ea",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [
|
84 |
+
{
|
85 |
+
"data": {
|
86 |
+
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "2316598db91e443f8c4e1cc615a9507f",
|
88 |
+
"version_major": 2,
|
89 |
+
"version_minor": 0
|
90 |
+
},
|
91 |
+
"text/plain": [
|
92 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"notebook_login()"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 3,
|
106 |
+
"id": "d2f13cac-1536-4da0-8ff7-0a0454fd0b4a",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"with open(\"ds1000-test-cleaned.json\") as json_file:\n",
|
111 |
+
" data = json.load(json_file)"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 4,
|
117 |
+
"id": "6706e68b-d525-4392-ab2c-1dff356da52d",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "stdout",
|
122 |
+
"output_type": "stream",
|
123 |
+
"text": [
|
124 |
+
"{'answer': 'import pandas as pd\\n'\n",
|
125 |
+
" '\\n'\n",
|
126 |
+
" '\\n'\n",
|
127 |
+
" 'index = range(14)\\n'\n",
|
128 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
129 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
130 |
+
" 'def g(df):\\n'\n",
|
131 |
+
" \" l = df['A'].replace(to_replace=0, method='ffill')\\n\"\n",
|
132 |
+
" \" r = df['A'].replace(to_replace=0, method='bfill')\\n\"\n",
|
133 |
+
" ' for i in range(len(df)):\\n'\n",
|
134 |
+
" \" df['A'].iloc[i] = max(l[i], r[i])\\n\"\n",
|
135 |
+
" ' return df\\n'\n",
|
136 |
+
" '\\n'\n",
|
137 |
+
" 'df = g(df.copy())\\n'\n",
|
138 |
+
" 'result = df\\n'\n",
|
139 |
+
" 'print(result)',\n",
|
140 |
+
" 'question': 'Problem:\\n'\n",
|
141 |
+
" 'I have the following dataframe:\\n'\n",
|
142 |
+
" 'index = range(14)\\n'\n",
|
143 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
144 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
145 |
+
" '\\n'\n",
|
146 |
+
" '\\n'\n",
|
147 |
+
" 'How can I fill the zeros with the maximun between previous and '\n",
|
148 |
+
" 'posterior non-zero value using pandas? Is there a fillna that is '\n",
|
149 |
+
" 'not just for \"NaN\"?. \\n'\n",
|
150 |
+
" 'The output should look like:\\n'\n",
|
151 |
+
" ' A\\n'\n",
|
152 |
+
" '0 1\\n'\n",
|
153 |
+
" '1 2\\n'\n",
|
154 |
+
" '2 2\\n'\n",
|
155 |
+
" '3 2\\n'\n",
|
156 |
+
" '4 4\\n'\n",
|
157 |
+
" '5 4\\n'\n",
|
158 |
+
" '6 6\\n'\n",
|
159 |
+
" '7 8\\n'\n",
|
160 |
+
" '8 8\\n'\n",
|
161 |
+
" '9 8\\n'\n",
|
162 |
+
" '10 8\\n'\n",
|
163 |
+
" '11 8\\n'\n",
|
164 |
+
" '12 2\\n'\n",
|
165 |
+
" '13 1'}\n"
|
166 |
+
]
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"pprint(data[0])"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 5,
|
176 |
+
"id": "9cc4983a-9a3f-485f-983f-efe2f10ce516",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"with open(\"ds1000-test-cleaned.json\", \"w\") as f:\n",
|
181 |
+
" json.dump(data, f)"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 6,
|
187 |
+
"id": "f45c3674-4eed-4ca5-8343-2184ff1e4da1",
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"data": {
|
192 |
+
"text/html": [
|
193 |
+
"<div>\n",
|
194 |
+
"<style scoped>\n",
|
195 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
196 |
+
" vertical-align: middle;\n",
|
197 |
+
" }\n",
|
198 |
+
"\n",
|
199 |
+
" .dataframe tbody tr th {\n",
|
200 |
+
" vertical-align: top;\n",
|
201 |
+
" }\n",
|
202 |
+
"\n",
|
203 |
+
" .dataframe thead th {\n",
|
204 |
+
" text-align: right;\n",
|
205 |
+
" }\n",
|
206 |
+
"</style>\n",
|
207 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
208 |
+
" <thead>\n",
|
209 |
+
" <tr style=\"text-align: right;\">\n",
|
210 |
+
" <th></th>\n",
|
211 |
+
" <th>question</th>\n",
|
212 |
+
" <th>answer</th>\n",
|
213 |
+
" </tr>\n",
|
214 |
+
" </thead>\n",
|
215 |
+
" <tbody>\n",
|
216 |
+
" <tr>\n",
|
217 |
+
" <th>0</th>\n",
|
218 |
+
" <td>Problem:\\nI have the following dataframe:\\nind...</td>\n",
|
219 |
+
" <td>import pandas as pd\\n\\n\\nindex = range(14)\\nda...</td>\n",
|
220 |
+
" </tr>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>1</th>\n",
|
223 |
+
" <td>Problem:\\ni got an issue over ranking of date ...</td>\n",
|
224 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I...</td>\n",
|
225 |
+
" </tr>\n",
|
226 |
+
" <tr>\n",
|
227 |
+
" <th>2</th>\n",
|
228 |
+
" <td>Problem:\\nI have a DataFrame like :\\n 0 ...</td>\n",
|
229 |
+
" <td>import pandas as pd\\nimport numpy as np\\n\\ndf ...</td>\n",
|
230 |
+
" </tr>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <th>3</th>\n",
|
233 |
+
" <td>Problem:\\nI have this Pandas dataframe (df):\\n...</td>\n",
|
234 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A...</td>\n",
|
235 |
+
" </tr>\n",
|
236 |
+
" <tr>\n",
|
237 |
+
" <th>4</th>\n",
|
238 |
+
" <td>Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic...</td>\n",
|
239 |
+
" <td>import pandas as pd\\n\\ndf = pd.DataFrame.from_...</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" </tbody>\n",
|
242 |
+
"</table>\n",
|
243 |
+
"</div>"
|
244 |
+
],
|
245 |
+
"text/plain": [
|
246 |
+
" question \\\n",
|
247 |
+
"0 Problem:\\nI have the following dataframe:\\nind... \n",
|
248 |
+
"1 Problem:\\ni got an issue over ranking of date ... \n",
|
249 |
+
"2 Problem:\\nI have a DataFrame like :\\n 0 ... \n",
|
250 |
+
"3 Problem:\\nI have this Pandas dataframe (df):\\n... \n",
|
251 |
+
"4 Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic... \n",
|
252 |
+
"\n",
|
253 |
+
" answer \n",
|
254 |
+
"0 import pandas as pd\\n\\n\\nindex = range(14)\\nda... \n",
|
255 |
+
"1 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I... \n",
|
256 |
+
"2 import pandas as pd\\nimport numpy as np\\n\\ndf ... \n",
|
257 |
+
"3 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A... \n",
|
258 |
+
"4 import pandas as pd\\n\\ndf = pd.DataFrame.from_... "
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"execution_count": 6,
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "execute_result"
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"pd.DataFrame(data).head()"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": 7,
|
273 |
+
"id": "6fbdd3ad-062f-4744-bb8e-1c19950adfd5",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
278 |
+
" load_in_4bit=True,\n",
|
279 |
+
" bnb_4bit_use_double_quant=True,\n",
|
280 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
281 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
282 |
+
")"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 8,
|
288 |
+
"id": "2b5ae38c-b0d2-4b9a-acde-3370130ca6e7",
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [
|
291 |
+
{
|
292 |
+
"data": {
|
293 |
+
"application/vnd.jupyter.widget-view+json": {
|
294 |
+
"model_id": "7e1406ca2f5f4c0dbf0a581edebc9a6b",
|
295 |
+
"version_major": 2,
|
296 |
+
"version_minor": 0
|
297 |
+
},
|
298 |
+
"text/plain": [
|
299 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
"metadata": {},
|
303 |
+
"output_type": "display_data"
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"name": "stderr",
|
307 |
+
"output_type": "stream",
|
308 |
+
"text": [
|
309 |
+
"Some weights of LlamaForCausalLM were not initialized from the model checkpoint at deepseek-ai/deepseek-coder-6.7b-instruct and are newly initialized: ['model.layers.17.self_attn.rotary_emb.inv_freq', 'model.layers.4.self_attn.rotary_emb.inv_freq', 'model.layers.12.self_attn.rotary_emb.inv_freq', 'model.layers.29.self_attn.rotary_emb.inv_freq', 'model.layers.20.self_attn.rotary_emb.inv_freq', 'model.layers.15.self_attn.rotary_emb.inv_freq', 'model.layers.21.self_attn.rotary_emb.inv_freq', 'model.layers.19.self_attn.rotary_emb.inv_freq', 'model.layers.23.self_attn.rotary_emb.inv_freq', 'model.layers.30.self_attn.rotary_emb.inv_freq', 'model.layers.3.self_attn.rotary_emb.inv_freq', 'model.layers.18.self_attn.rotary_emb.inv_freq', 'model.layers.6.self_attn.rotary_emb.inv_freq', 'model.layers.1.self_attn.rotary_emb.inv_freq', 'model.layers.31.self_attn.rotary_emb.inv_freq', 'model.layers.28.self_attn.rotary_emb.inv_freq', 'model.layers.14.self_attn.rotary_emb.inv_freq', 'model.layers.0.self_attn.rotary_emb.inv_freq', 'model.layers.22.self_attn.rotary_emb.inv_freq', 'model.layers.11.self_attn.rotary_emb.inv_freq', 'model.layers.7.self_attn.rotary_emb.inv_freq', 'model.layers.5.self_attn.rotary_emb.inv_freq', 'model.layers.9.self_attn.rotary_emb.inv_freq', 'model.layers.27.self_attn.rotary_emb.inv_freq', 'model.layers.24.self_attn.rotary_emb.inv_freq', 'model.layers.13.self_attn.rotary_emb.inv_freq', 'model.layers.16.self_attn.rotary_emb.inv_freq', 'model.layers.26.self_attn.rotary_emb.inv_freq', 'model.layers.25.self_attn.rotary_emb.inv_freq', 'model.layers.8.self_attn.rotary_emb.inv_freq', 'model.layers.2.self_attn.rotary_emb.inv_freq', 'model.layers.10.self_attn.rotary_emb.inv_freq']\n",
|
310 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"data": {
|
315 |
+
"application/vnd.jupyter.widget-view+json": {
|
316 |
+
"model_id": "2b9911223be04aeabbc44875a5929afa",
|
317 |
+
"version_major": 2,
|
318 |
+
"version_minor": 0
|
319 |
+
},
|
320 |
+
"text/plain": [
|
321 |
+
"adapter_model.bin: 0%| | 0.00/33.6M [00:00<?, ?B/s]"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
"metadata": {},
|
325 |
+
"output_type": "display_data"
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"source": [
|
329 |
+
"PEFT_MODEL = \"shanjay/ds-dsc-v4\"\n",
|
330 |
+
"\n",
|
331 |
+
"config = PeftConfig.from_pretrained(PEFT_MODEL)\n",
|
332 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
333 |
+
" config.base_model_name_or_path,\n",
|
334 |
+
" return_dict=True,\n",
|
335 |
+
" quantization_config=bnb_config,\n",
|
336 |
+
" device_map=\"auto\",\n",
|
337 |
+
" trust_remote_code=True,\n",
|
338 |
+
")\n",
|
339 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
340 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
341 |
+
"\n",
|
342 |
+
"model = PeftModel.from_pretrained(model, PEFT_MODEL)"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"execution_count": 9,
|
348 |
+
"id": "7c3e35e0-f77c-4d63-8e2b-e72027341e31",
|
349 |
+
"metadata": {},
|
350 |
+
"outputs": [],
|
351 |
+
"source": [
|
352 |
+
"generation_config = model.generation_config\n",
|
353 |
+
"generation_config.max_new_tokens = 200\n",
|
354 |
+
"generation_config.temperature = 0.7\n",
|
355 |
+
"generation_config.top_p = 0.7\n",
|
356 |
+
"generation_config.num_return_sequences = 1\n",
|
357 |
+
"generation_config.pad_token_id = tokenizer.eos_token_id\n",
|
358 |
+
"generation_config.eos_token_id = tokenizer.eos_token_id"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "code",
|
363 |
+
"execution_count": 10,
|
364 |
+
"id": "aee4385b-d855-4225-9532-4e9002322579",
|
365 |
+
"metadata": {},
|
366 |
+
"outputs": [],
|
367 |
+
"source": [
|
368 |
+
"DEVICE = \"cuda:0\""
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"execution_count": 11,
|
374 |
+
"id": "7b14a1c6-ac62-4a9c-9df9-0db50facfd7e",
|
375 |
+
"metadata": {},
|
376 |
+
"outputs": [
|
377 |
+
{
|
378 |
+
"name": "stdout",
|
379 |
+
"output_type": "stream",
|
380 |
+
"text": [
|
381 |
+
"<instruction>: How can I create a dataframe?\n",
|
382 |
+
"<output>: import pandas as pd\n",
|
383 |
+
"\n",
|
384 |
+
"\n",
|
385 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
386 |
+
"print(df)\n",
|
387 |
+
" A B\n",
|
388 |
+
"0 1 4\n",
|
389 |
+
"1 2 5\n",
|
390 |
+
"2 3 6\n",
|
391 |
+
"<output>: import pandas as pd\n",
|
392 |
+
"\n",
|
393 |
+
"\n",
|
394 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
395 |
+
"print(df)\n",
|
396 |
+
" A B\n",
|
397 |
+
"0 1 4\n",
|
398 |
+
"1 2 5\n",
|
399 |
+
"2 3 6\n",
|
400 |
+
"<output>: import pandas as pd\n",
|
401 |
+
"\n",
|
402 |
+
"\n",
|
403 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
404 |
+
"print(df)\n",
|
405 |
+
" A\n",
|
406 |
+
"CPU times: user 26.8 s, sys: 346 ms, total: 27.1 s\n",
|
407 |
+
"Wall time: 27.2 s\n"
|
408 |
+
]
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"source": [
|
412 |
+
"%%time\n",
|
413 |
+
"prompt = f\"\"\"\n",
|
414 |
+
"<instruction>: How can I create a dataframe?\n",
|
415 |
+
"<output>:\n",
|
416 |
+
"\"\"\".strip()\n",
|
417 |
+
"\n",
|
418 |
+
"encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
419 |
+
"with torch.inference_mode():\n",
|
420 |
+
" outputs = model.generate(\n",
|
421 |
+
" input_ids=encoding.input_ids,\n",
|
422 |
+
" attention_mask=encoding.attention_mask,\n",
|
423 |
+
" generation_config=generation_config,\n",
|
424 |
+
" )\n",
|
425 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": 12,
|
431 |
+
"id": "93c95988-c563-4871-974d-004bf73fbce8",
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": [
|
435 |
+
"def generate_response(question: str) -> str:\n",
|
436 |
+
" prompt = f\"\"\"\n",
|
437 |
+
"<instruction>: {question}\n",
|
438 |
+
"<output>:\n",
|
439 |
+
"\"\"\".strip()\n",
|
440 |
+
" encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
441 |
+
" with torch.inference_mode():\n",
|
442 |
+
" outputs = model.generate(\n",
|
443 |
+
" input_ids=encoding.input_ids,\n",
|
444 |
+
" attention_mask=encoding.attention_mask,\n",
|
445 |
+
" generation_config=generation_config,\n",
|
446 |
+
" )\n",
|
447 |
+
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
448 |
+
"\n",
|
449 |
+
" assistant_start = \"<output>:\"\n",
|
450 |
+
" response_start = response.find(assistant_start)\n",
|
451 |
+
" return response[response_start + len(assistant_start) :].strip()"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": 13,
|
457 |
+
"id": "8a9a9b87-193b-4bed-8ef1-57944d931958",
|
458 |
+
"metadata": {},
|
459 |
+
"outputs": [
|
460 |
+
{
|
461 |
+
"name": "stdout",
|
462 |
+
"output_type": "stream",
|
463 |
+
"text": [
|
464 |
+
"import pandas as pd\n",
|
465 |
+
"\n",
|
466 |
+
"\n",
|
467 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
468 |
+
"print(df)\n",
|
469 |
+
" A B\n",
|
470 |
+
"0 1 4\n",
|
471 |
+
"1 2 5\n",
|
472 |
+
"2 3 6\n",
|
473 |
+
"<output>: import pandas as pd\n",
|
474 |
+
"\n",
|
475 |
+
"\n",
|
476 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
477 |
+
"print(df)\n",
|
478 |
+
" A B\n",
|
479 |
+
"0 1 4\n",
|
480 |
+
"1 2 5\n",
|
481 |
+
"2 3 6\n",
|
482 |
+
"<output>: import pandas as pd\n",
|
483 |
+
"\n",
|
484 |
+
"\n",
|
485 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
486 |
+
"print(df)\n",
|
487 |
+
" A\n"
|
488 |
+
]
|
489 |
+
}
|
490 |
+
],
|
491 |
+
"source": [
|
492 |
+
"prompt = \"How can I create a dataframe?\"\n",
|
493 |
+
"print(generate_response(prompt))"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": 14,
|
499 |
+
"id": "4658f305-b7c6-432c-ac0c-f62bd79e9ad5",
|
500 |
+
"metadata": {},
|
501 |
+
"outputs": [
|
502 |
+
{
|
503 |
+
"name": "stdout",
|
504 |
+
"output_type": "stream",
|
505 |
+
"text": [
|
506 |
+
"import pandas as pd\n",
|
507 |
+
"\n",
|
508 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
509 |
+
"df2 = pd.DataFrame({'C': [7, 8, 9], 'D': [10, 11, 12]})\n",
|
510 |
+
"\n",
|
511 |
+
"# merge df1 and df2\n",
|
512 |
+
"result = ...\n",
|
513 |
+
"\n",
|
514 |
+
"print(result)\n",
|
515 |
+
"\n",
|
516 |
+
"# Expected output\n",
|
517 |
+
"# A B C D\n",
|
518 |
+
"# 0 1 4 7 10\n",
|
519 |
+
"# 1 2 5 8 11\n",
|
520 |
+
"# 2 3 6 9 12\n",
|
521 |
+
"<output>: import pandas as pd\n",
|
522 |
+
"\n",
|
523 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]\n"
|
524 |
+
]
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"source": [
|
528 |
+
"prompt = \"How to merge two dataframes?\"\n",
|
529 |
+
"print(generate_response(prompt))"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 15,
|
535 |
+
"id": "0e9ed231-4a62-4331-94df-f3bcd601f138",
|
536 |
+
"metadata": {},
|
537 |
+
"outputs": [
|
538 |
+
{
|
539 |
+
"name": "stdout",
|
540 |
+
"output_type": "stream",
|
541 |
+
"text": [
|
542 |
+
"import pandas as pd\n",
|
543 |
+
"\n",
|
544 |
+
"\n",
|
545 |
+
"name=['joy','shan']\n",
|
546 |
+
"roll_no=[1,2]\n",
|
547 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
548 |
+
"print(df)\n",
|
549 |
+
"\n",
|
550 |
+
"\n",
|
551 |
+
" name roll_no\n",
|
552 |
+
"0 joy 1\n",
|
553 |
+
"1 shan 2\n",
|
554 |
+
"<output>: import pandas as pd\n",
|
555 |
+
"\n",
|
556 |
+
"\n",
|
557 |
+
"name=['joy','shan']\n",
|
558 |
+
"roll_no=[1,2]\n",
|
559 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
560 |
+
"print(df)\n",
|
561 |
+
"\n",
|
562 |
+
"\n",
|
563 |
+
" name roll_no\n",
|
564 |
+
"0 joy 1\n",
|
565 |
+
"1 shan 2\n",
|
566 |
+
"<output>: import pandas as pd\n",
|
567 |
+
"\n",
|
568 |
+
"\n",
|
569 |
+
"name=['joy','shan']\n",
|
570 |
+
"roll_no=[1,2]\n",
|
571 |
+
"df = pd.DataFrame({\n"
|
572 |
+
]
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"source": [
|
576 |
+
"prompt = \"given two arrays name=['joy','shan'], roll_no=[1,2]. put these array in a dataframe ?\"\n",
|
577 |
+
"print(generate_response(prompt))"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"execution_count": 16,
|
583 |
+
"id": "381ba5c0-276d-411e-a8d5-9f010528433d",
|
584 |
+
"metadata": {},
|
585 |
+
"outputs": [
|
586 |
+
{
|
587 |
+
"name": "stdout",
|
588 |
+
"output_type": "stream",
|
589 |
+
"text": [
|
590 |
+
"import matplotlib.pyplot as plt\n",
|
591 |
+
"\n",
|
592 |
+
"x = range(10)\n",
|
593 |
+
"y = range(10)\n",
|
594 |
+
"\n",
|
595 |
+
"plt.plot(x, y, label='line')\n",
|
596 |
+
"plt.scatter(x, y, label='scatter')\n",
|
597 |
+
"plt.bar(x, y, label='bar')\n",
|
598 |
+
"plt.hist(x, y, label='hist')\n",
|
599 |
+
"plt.legend()\n",
|
600 |
+
"plt.show()\n",
|
601 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
602 |
+
"\n",
|
603 |
+
"x = range(10)\n",
|
604 |
+
"y = range(10)\n",
|
605 |
+
"\n",
|
606 |
+
"plt.plot(x, y, label='line')\n",
|
607 |
+
"plt.scatter(x, y, label='scatter')\n",
|
608 |
+
"plt.bar(x, y, label='bar')\n",
|
609 |
+
"plt.hist(x, y, label='hist')\n",
|
610 |
+
"pl\n"
|
611 |
+
]
|
612 |
+
}
|
613 |
+
],
|
614 |
+
"source": [
|
615 |
+
"prompt = \"can you plot all types of plots in matplotlib?\"\n",
|
616 |
+
"print(generate_response(prompt))"
|
617 |
+
]
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"cell_type": "code",
|
621 |
+
"execution_count": 19,
|
622 |
+
"id": "6864c3c7-b721-48ca-8943-dcff9838f7d2",
|
623 |
+
"metadata": {},
|
624 |
+
"outputs": [
|
625 |
+
{
|
626 |
+
"name": "stdout",
|
627 |
+
"output_type": "stream",
|
628 |
+
"text": [
|
629 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
630 |
+
]
|
631 |
+
}
|
632 |
+
],
|
633 |
+
"source": [
|
634 |
+
"prompt = \"\"\"Problem:\n",
|
635 |
+
"i got an issue over ranking of date times. Lets say i have following table.\n",
|
636 |
+
"ID TIME\n",
|
637 |
+
"01 2018-07-11 11:12:20\n",
|
638 |
+
"01 2018-07-12 12:00:23\n",
|
639 |
+
"01 2018-07-13 12:00:00\n",
|
640 |
+
"02 2019-09-11 11:00:00\n",
|
641 |
+
"02 2019-09-12 12:00:00\n",
|
642 |
+
"\n",
|
643 |
+
"\n",
|
644 |
+
"and i want to add another column to rank the table by time for each id and group. I used \n",
|
645 |
+
"df['RANK'] = data.groupby('ID')['TIME'].rank(ascending=True)\n",
|
646 |
+
"\n",
|
647 |
+
"\n",
|
648 |
+
"but get an error:\n",
|
649 |
+
"'NoneType' object is not callable\n",
|
650 |
+
"\n",
|
651 |
+
"\n",
|
652 |
+
"If i replace datetime to numbers, it works.... any solutions?\n",
|
653 |
+
"\"\"\"\n",
|
654 |
+
"print(generate_response(prompt))"
|
655 |
+
]
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"cell_type": "code",
|
659 |
+
"execution_count": 20,
|
660 |
+
"id": "7fa02929-5c65-4aa6-81ce-9c51879e7535",
|
661 |
+
"metadata": {},
|
662 |
+
"outputs": [
|
663 |
+
{
|
664 |
+
"name": "stdout",
|
665 |
+
"output_type": "stream",
|
666 |
+
"text": [
|
667 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
668 |
+
]
|
669 |
+
}
|
670 |
+
],
|
671 |
+
"source": [
|
672 |
+
"prompt = \"\"\"Problem:\n",
|
673 |
+
"I have the following dataframe:\n",
|
674 |
+
"index = range(14)\n",
|
675 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
676 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
677 |
+
"\n",
|
678 |
+
"\n",
|
679 |
+
"How can I fill the zeros with the maximun between previous and posterior non-zero value using pandas? Is there a fillna that is not just for \"NaN\"?. \n",
|
680 |
+
"The output should look like:\n",
|
681 |
+
" A\n",
|
682 |
+
"0 1\n",
|
683 |
+
"1 2\n",
|
684 |
+
"2 2\n",
|
685 |
+
"3 2\n",
|
686 |
+
"4 4\n",
|
687 |
+
"5 4\n",
|
688 |
+
"6 6\n",
|
689 |
+
"7 8\n",
|
690 |
+
"8 8\n",
|
691 |
+
"9 8\n",
|
692 |
+
"10 8\n",
|
693 |
+
"11 8\n",
|
694 |
+
"12 2\n",
|
695 |
+
"13 1\n",
|
696 |
+
"\"\"\"\n",
|
697 |
+
"\n",
|
698 |
+
"print(generate_response(prompt))"
|
699 |
+
]
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"cell_type": "code",
|
703 |
+
"execution_count": 27,
|
704 |
+
"id": "255cc021-5f5e-46af-a75e-a435b9629cdf",
|
705 |
+
"metadata": {},
|
706 |
+
"outputs": [
|
707 |
+
{
|
708 |
+
"name": "stdout",
|
709 |
+
"output_type": "stream",
|
710 |
+
"text": [
|
711 |
+
"Problem:\n",
|
712 |
+
"My sample df has four columns with NaN values. The goal is to concatenate all the keywords rows while excluding the NaN values.\n",
|
713 |
+
"import pandas as pd\n",
|
714 |
+
"import numpy as np\n",
|
715 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
716 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
717 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
718 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
719 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
720 |
+
"\n",
|
721 |
+
"\n",
|
722 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3\n",
|
723 |
+
"0 Hu Tao a d NaN f\n",
|
724 |
+
"1 Zhongli NaN e NaN NaN\n",
|
725 |
+
"2 Xingqiu c NaN b g\n",
|
726 |
+
"\n",
|
727 |
+
"\n",
|
728 |
+
"Want to accomplish the following:\n",
|
729 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3 keywords_all\n",
|
730 |
+
"0 Hu Tao a d NaN f a-d-f\n",
|
731 |
+
"1 Zhongli NaN e NaN NaN e\n",
|
732 |
+
"2 Xingqiu c NaN b g c-b-g\n",
|
733 |
+
"\n",
|
734 |
+
"\n",
|
735 |
+
"Pseudo code:\n",
|
736 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
737 |
+
"df[\"keywords_all\"] = df[\"keywords_all\"].apply(lambda cols: \"-\".join(cols), axis=1)\n",
|
738 |
+
"\n",
|
739 |
+
"\n",
|
740 |
+
"I know I can use \"-\".join() to get the exact result, but I am unsure how to pass the column names into the function.\n"
|
741 |
+
]
|
742 |
+
}
|
743 |
+
],
|
744 |
+
"source": [
|
745 |
+
"print(data[5]['question'])"
|
746 |
+
]
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"cell_type": "code",
|
750 |
+
"execution_count": 28,
|
751 |
+
"id": "1c5841e9-4331-4185-a7ad-7dd00d4e13b1",
|
752 |
+
"metadata": {},
|
753 |
+
"outputs": [
|
754 |
+
{
|
755 |
+
"name": "stdout",
|
756 |
+
"output_type": "stream",
|
757 |
+
"text": [
|
758 |
+
"import pandas as pd\n",
|
759 |
+
"import numpy as np\n",
|
760 |
+
"\n",
|
761 |
+
"\n",
|
762 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
763 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
764 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
765 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
766 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
767 |
+
"import numpy as np\n",
|
768 |
+
"def g(df):\n",
|
769 |
+
" df[\"keywords_all\"] = df.filter(like='keyword').apply(lambda x: '-'.join(x.dropna()), axis=1)\n",
|
770 |
+
" return df\n",
|
771 |
+
"\n",
|
772 |
+
"df = g(df.copy())\n",
|
773 |
+
"result = df\n",
|
774 |
+
"print(result)\n"
|
775 |
+
]
|
776 |
+
}
|
777 |
+
],
|
778 |
+
"source": [
|
779 |
+
"print(data[5]['answer'])"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"execution_count": 29,
|
785 |
+
"id": "090e98c3-78db-4e33-af4b-01c6e1fc23d0",
|
786 |
+
"metadata": {},
|
787 |
+
"outputs": [
|
788 |
+
{
|
789 |
+
"name": "stdout",
|
790 |
+
"output_type": "stream",
|
791 |
+
"text": [
|
792 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
793 |
+
]
|
794 |
+
}
|
795 |
+
],
|
796 |
+
"source": [
|
797 |
+
"prompt = data[5]['question']\n",
|
798 |
+
"print(generate_response(prompt))"
|
799 |
+
]
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"cell_type": "code",
|
803 |
+
"execution_count": 30,
|
804 |
+
"id": "29609669-1ac7-4f6a-b0e3-64a3bf7a6545",
|
805 |
+
"metadata": {},
|
806 |
+
"outputs": [
|
807 |
+
{
|
808 |
+
"name": "stdout",
|
809 |
+
"output_type": "stream",
|
810 |
+
"text": [
|
811 |
+
"import pandas as pd\n",
|
812 |
+
"\n",
|
813 |
+
"\n",
|
814 |
+
"df = pd.DataFrame({'A': [1, 2, 3, None, 5],\n",
|
815 |
+
" 'B': [1, 2, 3, None, 5],\n",
|
816 |
+
" 'C': [1, 2, 3, None, 5],\n",
|
817 |
+
" 'D': [1, 2, 3, None, 5],\n",
|
818 |
+
" 'E': [1, 2, 3, None, 5]})\n",
|
819 |
+
"\n",
|
820 |
+
"df = df.dropna(how='all')\n",
|
821 |
+
"print(df)\n",
|
822 |
+
"<output>: A B C D E\n",
|
823 |
+
"0 1 1 1 1 1\n",
|
824 |
+
"1 2 2 2 2 2\n",
|
825 |
+
"2 3 3 3 3 3\n",
|
826 |
+
"4 5 5 5 5 5\n",
|
827 |
+
"<output>: import pand\n"
|
828 |
+
]
|
829 |
+
}
|
830 |
+
],
|
831 |
+
"source": [
|
832 |
+
"prompt = \"How to remove null valued rows?\"\n",
|
833 |
+
"print(generate_response(prompt))"
|
834 |
+
]
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"cell_type": "code",
|
838 |
+
"execution_count": null,
|
839 |
+
"id": "5ca085f6-30fc-4e50-a436-673f3baa75af",
|
840 |
+
"metadata": {},
|
841 |
+
"outputs": [],
|
842 |
+
"source": []
|
843 |
+
}
|
844 |
+
],
|
845 |
+
"metadata": {
|
846 |
+
"kernelspec": {
|
847 |
+
"display_name": "Python 3 (ipykernel)",
|
848 |
+
"language": "python",
|
849 |
+
"name": "python3"
|
850 |
+
},
|
851 |
+
"language_info": {
|
852 |
+
"codemirror_mode": {
|
853 |
+
"name": "ipython",
|
854 |
+
"version": 3
|
855 |
+
},
|
856 |
+
"file_extension": ".py",
|
857 |
+
"mimetype": "text/x-python",
|
858 |
+
"name": "python",
|
859 |
+
"nbconvert_exporter": "python",
|
860 |
+
"pygments_lexer": "ipython3",
|
861 |
+
"version": "3.10.13"
|
862 |
+
}
|
863 |
+
},
|
864 |
+
"nbformat": 4,
|
865 |
+
"nbformat_minor": 5
|
866 |
+
}
|
.ipynb_checkpoints/Testv3-checkpoint.ipynb
ADDED
@@ -0,0 +1,831 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "addd199c-097c-419d-a0f2-c3d73efb8d5d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"===================================BUG REPORT===================================\n",
|
15 |
+
"Welcome to bitsandbytes. For bug reports, please run\n",
|
16 |
+
"\n",
|
17 |
+
"python -m bitsandbytes\n",
|
18 |
+
"\n",
|
19 |
+
" and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
20 |
+
"================================================================================\n",
|
21 |
+
"bin /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so\n",
|
22 |
+
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...\n",
|
23 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so\n",
|
24 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 8.6\n",
|
25 |
+
"CUDA SETUP: Detected CUDA version 121\n",
|
26 |
+
"CUDA SETUP: Loading binary /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...\n"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "stderr",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/usr/local/nvidia/lib'), PosixPath('/usr/local/nvidia/lib64')}\n",
|
34 |
+
" warn(msg)\n",
|
35 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths...\n",
|
36 |
+
" warn(msg)\n",
|
37 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCcuY6EsmJRfLsI1l1rpDWVRhwkL7A9nzITTDbCFOX0wzshP65l/Sa54NrS1pX2uM6YiB7OvgGUm7uUKf9OBCcpd2ohFJiOkTznhDHk+D7IkFZf/VTRIHy/JZoAtzN/qBQKMOygFam1XzTMDnkehMkKvR23BgH72hzGUfYPIsq+OlStYVMhE1bncYSnC4SRucbdT5BeIsival514xsbAhCjjwPd8UHfw1cxaDq4edWjbhN8wkDU+V8i/jS/wWTZIt7pIZiAREEl/YC+Sc4FCSnb4c3p+adl5pqXrEsKygi+UmBtC1poLSXTgZOc/0kerx4jv/HB8NiH4kLsg4S2HjdFFQIB0WSV0i4KDVRE9cv18gQ7kbEv0t9Uwg4xdoMntCNS6aFDm51ufhshwQylzfSwX71Ka3mPdftfnVk81wKpIxN784FEcb7IE7HcNyomnP9N382Fg8j6pILwsKK6w4oOg8Cn2C66cySA6CNTFpK1kYBwsqdU3X8WBQUIZZNVCn4x/qRWYxrKHmdlUW8oCf9AT32eydDQWp1y0AlycA4wfbDQ8g4dtu9Rf+tBrYTztdCt5PbGy4SbwfynWysc/PuhcyaLNtuRYt3LeiCKhKJFNFST1BqjACrjkQ9kMrPSB/7j3JX9O2ncDHDQgCQIQon9BETVQZJ49EqMrusQ3/K39w== shanjay@LAPTOP-Q1PG3AE7')}\n",
|
38 |
+
" warn(msg)\n",
|
39 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('https'), PosixPath('//g.notebooksg.jarvislabs.net')}\n",
|
40 |
+
" warn(msg)\n",
|
41 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//matplotlib_inline.backend_inline')}\n",
|
42 |
+
" warn(msg)\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"import json\n",
|
48 |
+
"import os\n",
|
49 |
+
"from pprint import pprint\n",
|
50 |
+
"\n",
|
51 |
+
"import bitsandbytes as bnb\n",
|
52 |
+
"import pandas as pd\n",
|
53 |
+
"import torch\n",
|
54 |
+
"import torch.nn as nn\n",
|
55 |
+
"\n",
|
56 |
+
"import transformers\n",
|
57 |
+
"from datasets import load_dataset\n",
|
58 |
+
"from huggingface_hub import notebook_login\n",
|
59 |
+
"from peft import (\n",
|
60 |
+
" LoraConfig,\n",
|
61 |
+
" PeftConfig,\n",
|
62 |
+
" PeftModel,\n",
|
63 |
+
" get_peft_model,\n",
|
64 |
+
" prepare_model_for_kbit_training,\n",
|
65 |
+
")\n",
|
66 |
+
"from transformers import (\n",
|
67 |
+
" AutoConfig,\n",
|
68 |
+
" AutoModelForCausalLM,\n",
|
69 |
+
" AutoTokenizer,\n",
|
70 |
+
" BitsAndBytesConfig,\n",
|
71 |
+
")\n",
|
72 |
+
"import warnings\n",
|
73 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
74 |
+
"\n",
|
75 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 2,
|
81 |
+
"id": "acfb1578-a66f-44f0-8df9-1c6bcf7530ea",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [
|
84 |
+
{
|
85 |
+
"data": {
|
86 |
+
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "2316598db91e443f8c4e1cc615a9507f",
|
88 |
+
"version_major": 2,
|
89 |
+
"version_minor": 0
|
90 |
+
},
|
91 |
+
"text/plain": [
|
92 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"notebook_login()"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 3,
|
106 |
+
"id": "d2f13cac-1536-4da0-8ff7-0a0454fd0b4a",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"with open(\"ds1000-test-cleaned.json\") as json_file:\n",
|
111 |
+
" data = json.load(json_file)"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 4,
|
117 |
+
"id": "6706e68b-d525-4392-ab2c-1dff356da52d",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "stdout",
|
122 |
+
"output_type": "stream",
|
123 |
+
"text": [
|
124 |
+
"{'answer': 'import pandas as pd\\n'\n",
|
125 |
+
" '\\n'\n",
|
126 |
+
" '\\n'\n",
|
127 |
+
" 'index = range(14)\\n'\n",
|
128 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
129 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
130 |
+
" 'def g(df):\\n'\n",
|
131 |
+
" \" l = df['A'].replace(to_replace=0, method='ffill')\\n\"\n",
|
132 |
+
" \" r = df['A'].replace(to_replace=0, method='bfill')\\n\"\n",
|
133 |
+
" ' for i in range(len(df)):\\n'\n",
|
134 |
+
" \" df['A'].iloc[i] = max(l[i], r[i])\\n\"\n",
|
135 |
+
" ' return df\\n'\n",
|
136 |
+
" '\\n'\n",
|
137 |
+
" 'df = g(df.copy())\\n'\n",
|
138 |
+
" 'result = df\\n'\n",
|
139 |
+
" 'print(result)',\n",
|
140 |
+
" 'question': 'Problem:\\n'\n",
|
141 |
+
" 'I have the following dataframe:\\n'\n",
|
142 |
+
" 'index = range(14)\\n'\n",
|
143 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
144 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
145 |
+
" '\\n'\n",
|
146 |
+
" '\\n'\n",
|
147 |
+
" 'How can I fill the zeros with the maximun between previous and '\n",
|
148 |
+
" 'posterior non-zero value using pandas? Is there a fillna that is '\n",
|
149 |
+
" 'not just for \"NaN\"?. \\n'\n",
|
150 |
+
" 'The output should look like:\\n'\n",
|
151 |
+
" ' A\\n'\n",
|
152 |
+
" '0 1\\n'\n",
|
153 |
+
" '1 2\\n'\n",
|
154 |
+
" '2 2\\n'\n",
|
155 |
+
" '3 2\\n'\n",
|
156 |
+
" '4 4\\n'\n",
|
157 |
+
" '5 4\\n'\n",
|
158 |
+
" '6 6\\n'\n",
|
159 |
+
" '7 8\\n'\n",
|
160 |
+
" '8 8\\n'\n",
|
161 |
+
" '9 8\\n'\n",
|
162 |
+
" '10 8\\n'\n",
|
163 |
+
" '11 8\\n'\n",
|
164 |
+
" '12 2\\n'\n",
|
165 |
+
" '13 1'}\n"
|
166 |
+
]
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"pprint(data[0])"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 5,
|
176 |
+
"id": "9cc4983a-9a3f-485f-983f-efe2f10ce516",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"with open(\"ds1000-test-cleaned.json\", \"w\") as f:\n",
|
181 |
+
" json.dump(data, f)"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 6,
|
187 |
+
"id": "f45c3674-4eed-4ca5-8343-2184ff1e4da1",
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"data": {
|
192 |
+
"text/html": [
|
193 |
+
"<div>\n",
|
194 |
+
"<style scoped>\n",
|
195 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
196 |
+
" vertical-align: middle;\n",
|
197 |
+
" }\n",
|
198 |
+
"\n",
|
199 |
+
" .dataframe tbody tr th {\n",
|
200 |
+
" vertical-align: top;\n",
|
201 |
+
" }\n",
|
202 |
+
"\n",
|
203 |
+
" .dataframe thead th {\n",
|
204 |
+
" text-align: right;\n",
|
205 |
+
" }\n",
|
206 |
+
"</style>\n",
|
207 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
208 |
+
" <thead>\n",
|
209 |
+
" <tr style=\"text-align: right;\">\n",
|
210 |
+
" <th></th>\n",
|
211 |
+
" <th>question</th>\n",
|
212 |
+
" <th>answer</th>\n",
|
213 |
+
" </tr>\n",
|
214 |
+
" </thead>\n",
|
215 |
+
" <tbody>\n",
|
216 |
+
" <tr>\n",
|
217 |
+
" <th>0</th>\n",
|
218 |
+
" <td>Problem:\\nI have the following dataframe:\\nind...</td>\n",
|
219 |
+
" <td>import pandas as pd\\n\\n\\nindex = range(14)\\nda...</td>\n",
|
220 |
+
" </tr>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>1</th>\n",
|
223 |
+
" <td>Problem:\\ni got an issue over ranking of date ...</td>\n",
|
224 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I...</td>\n",
|
225 |
+
" </tr>\n",
|
226 |
+
" <tr>\n",
|
227 |
+
" <th>2</th>\n",
|
228 |
+
" <td>Problem:\\nI have a DataFrame like :\\n 0 ...</td>\n",
|
229 |
+
" <td>import pandas as pd\\nimport numpy as np\\n\\ndf ...</td>\n",
|
230 |
+
" </tr>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <th>3</th>\n",
|
233 |
+
" <td>Problem:\\nI have this Pandas dataframe (df):\\n...</td>\n",
|
234 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A...</td>\n",
|
235 |
+
" </tr>\n",
|
236 |
+
" <tr>\n",
|
237 |
+
" <th>4</th>\n",
|
238 |
+
" <td>Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic...</td>\n",
|
239 |
+
" <td>import pandas as pd\\n\\ndf = pd.DataFrame.from_...</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" </tbody>\n",
|
242 |
+
"</table>\n",
|
243 |
+
"</div>"
|
244 |
+
],
|
245 |
+
"text/plain": [
|
246 |
+
" question \\\n",
|
247 |
+
"0 Problem:\\nI have the following dataframe:\\nind... \n",
|
248 |
+
"1 Problem:\\ni got an issue over ranking of date ... \n",
|
249 |
+
"2 Problem:\\nI have a DataFrame like :\\n 0 ... \n",
|
250 |
+
"3 Problem:\\nI have this Pandas dataframe (df):\\n... \n",
|
251 |
+
"4 Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic... \n",
|
252 |
+
"\n",
|
253 |
+
" answer \n",
|
254 |
+
"0 import pandas as pd\\n\\n\\nindex = range(14)\\nda... \n",
|
255 |
+
"1 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I... \n",
|
256 |
+
"2 import pandas as pd\\nimport numpy as np\\n\\ndf ... \n",
|
257 |
+
"3 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A... \n",
|
258 |
+
"4 import pandas as pd\\n\\ndf = pd.DataFrame.from_... "
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"execution_count": 6,
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "execute_result"
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"pd.DataFrame(data).head()"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": 7,
|
273 |
+
"id": "6fbdd3ad-062f-4744-bb8e-1c19950adfd5",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
278 |
+
" load_in_4bit=True,\n",
|
279 |
+
" bnb_4bit_use_double_quant=True,\n",
|
280 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
281 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
282 |
+
")"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 8,
|
288 |
+
"id": "2b5ae38c-b0d2-4b9a-acde-3370130ca6e7",
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [
|
291 |
+
{
|
292 |
+
"data": {
|
293 |
+
"application/vnd.jupyter.widget-view+json": {
|
294 |
+
"model_id": "7e1406ca2f5f4c0dbf0a581edebc9a6b",
|
295 |
+
"version_major": 2,
|
296 |
+
"version_minor": 0
|
297 |
+
},
|
298 |
+
"text/plain": [
|
299 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
"metadata": {},
|
303 |
+
"output_type": "display_data"
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"name": "stderr",
|
307 |
+
"output_type": "stream",
|
308 |
+
"text": [
|
309 |
+
"Some weights of LlamaForCausalLM were not initialized from the model checkpoint at deepseek-ai/deepseek-coder-6.7b-instruct and are newly initialized: ['model.layers.17.self_attn.rotary_emb.inv_freq', 'model.layers.4.self_attn.rotary_emb.inv_freq', 'model.layers.12.self_attn.rotary_emb.inv_freq', 'model.layers.29.self_attn.rotary_emb.inv_freq', 'model.layers.20.self_attn.rotary_emb.inv_freq', 'model.layers.15.self_attn.rotary_emb.inv_freq', 'model.layers.21.self_attn.rotary_emb.inv_freq', 'model.layers.19.self_attn.rotary_emb.inv_freq', 'model.layers.23.self_attn.rotary_emb.inv_freq', 'model.layers.30.self_attn.rotary_emb.inv_freq', 'model.layers.3.self_attn.rotary_emb.inv_freq', 'model.layers.18.self_attn.rotary_emb.inv_freq', 'model.layers.6.self_attn.rotary_emb.inv_freq', 'model.layers.1.self_attn.rotary_emb.inv_freq', 'model.layers.31.self_attn.rotary_emb.inv_freq', 'model.layers.28.self_attn.rotary_emb.inv_freq', 'model.layers.14.self_attn.rotary_emb.inv_freq', 'model.layers.0.self_attn.rotary_emb.inv_freq', 'model.layers.22.self_attn.rotary_emb.inv_freq', 'model.layers.11.self_attn.rotary_emb.inv_freq', 'model.layers.7.self_attn.rotary_emb.inv_freq', 'model.layers.5.self_attn.rotary_emb.inv_freq', 'model.layers.9.self_attn.rotary_emb.inv_freq', 'model.layers.27.self_attn.rotary_emb.inv_freq', 'model.layers.24.self_attn.rotary_emb.inv_freq', 'model.layers.13.self_attn.rotary_emb.inv_freq', 'model.layers.16.self_attn.rotary_emb.inv_freq', 'model.layers.26.self_attn.rotary_emb.inv_freq', 'model.layers.25.self_attn.rotary_emb.inv_freq', 'model.layers.8.self_attn.rotary_emb.inv_freq', 'model.layers.2.self_attn.rotary_emb.inv_freq', 'model.layers.10.self_attn.rotary_emb.inv_freq']\n",
|
310 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"data": {
|
315 |
+
"application/vnd.jupyter.widget-view+json": {
|
316 |
+
"model_id": "2b9911223be04aeabbc44875a5929afa",
|
317 |
+
"version_major": 2,
|
318 |
+
"version_minor": 0
|
319 |
+
},
|
320 |
+
"text/plain": [
|
321 |
+
"adapter_model.bin: 0%| | 0.00/33.6M [00:00<?, ?B/s]"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
"metadata": {},
|
325 |
+
"output_type": "display_data"
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"source": [
|
329 |
+
"PEFT_MODEL = \"shanjay/ds-dsc-v4\"\n",
|
330 |
+
"\n",
|
331 |
+
"config = PeftConfig.from_pretrained(PEFT_MODEL)\n",
|
332 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
333 |
+
" config.base_model_name_or_path,\n",
|
334 |
+
" return_dict=True,\n",
|
335 |
+
" quantization_config=bnb_config,\n",
|
336 |
+
" device_map=\"auto\",\n",
|
337 |
+
" trust_remote_code=True,\n",
|
338 |
+
")\n",
|
339 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
340 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
341 |
+
"\n",
|
342 |
+
"model = PeftModel.from_pretrained(model, PEFT_MODEL)"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"execution_count": 9,
|
348 |
+
"id": "7c3e35e0-f77c-4d63-8e2b-e72027341e31",
|
349 |
+
"metadata": {},
|
350 |
+
"outputs": [],
|
351 |
+
"source": [
|
352 |
+
"generation_config = model.generation_config\n",
|
353 |
+
"generation_config.max_new_tokens = 200\n",
|
354 |
+
"generation_config.temperature = 0.7\n",
|
355 |
+
"generation_config.top_p = 0.7\n",
|
356 |
+
"generation_config.num_return_sequences = 1\n",
|
357 |
+
"generation_config.pad_token_id = tokenizer.eos_token_id\n",
|
358 |
+
"generation_config.eos_token_id = tokenizer.eos_token_id"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "code",
|
363 |
+
"execution_count": 10,
|
364 |
+
"id": "aee4385b-d855-4225-9532-4e9002322579",
|
365 |
+
"metadata": {},
|
366 |
+
"outputs": [],
|
367 |
+
"source": [
|
368 |
+
"DEVICE = \"cuda:0\""
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"execution_count": 11,
|
374 |
+
"id": "7b14a1c6-ac62-4a9c-9df9-0db50facfd7e",
|
375 |
+
"metadata": {},
|
376 |
+
"outputs": [
|
377 |
+
{
|
378 |
+
"name": "stdout",
|
379 |
+
"output_type": "stream",
|
380 |
+
"text": [
|
381 |
+
"<instruction>: How can I create a dataframe?\n",
|
382 |
+
"<output>: import pandas as pd\n",
|
383 |
+
"\n",
|
384 |
+
"\n",
|
385 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
386 |
+
"print(df)\n",
|
387 |
+
" A B\n",
|
388 |
+
"0 1 4\n",
|
389 |
+
"1 2 5\n",
|
390 |
+
"2 3 6\n",
|
391 |
+
"<output>: import pandas as pd\n",
|
392 |
+
"\n",
|
393 |
+
"\n",
|
394 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
395 |
+
"print(df)\n",
|
396 |
+
" A B\n",
|
397 |
+
"0 1 4\n",
|
398 |
+
"1 2 5\n",
|
399 |
+
"2 3 6\n",
|
400 |
+
"<output>: import pandas as pd\n",
|
401 |
+
"\n",
|
402 |
+
"\n",
|
403 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
404 |
+
"print(df)\n",
|
405 |
+
" A\n",
|
406 |
+
"CPU times: user 26.8 s, sys: 346 ms, total: 27.1 s\n",
|
407 |
+
"Wall time: 27.2 s\n"
|
408 |
+
]
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"source": [
|
412 |
+
"%%time\n",
|
413 |
+
"prompt = f\"\"\"\n",
|
414 |
+
"<instruction>: How can I create a dataframe?\n",
|
415 |
+
"<output>:\n",
|
416 |
+
"\"\"\".strip()\n",
|
417 |
+
"\n",
|
418 |
+
"encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
419 |
+
"with torch.inference_mode():\n",
|
420 |
+
" outputs = model.generate(\n",
|
421 |
+
" input_ids=encoding.input_ids,\n",
|
422 |
+
" attention_mask=encoding.attention_mask,\n",
|
423 |
+
" generation_config=generation_config,\n",
|
424 |
+
" )\n",
|
425 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": 12,
|
431 |
+
"id": "93c95988-c563-4871-974d-004bf73fbce8",
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": [
|
435 |
+
"def generate_response(question: str) -> str:\n",
|
436 |
+
" prompt = f\"\"\"\n",
|
437 |
+
"<instruction>: {question}\n",
|
438 |
+
"<output>:\n",
|
439 |
+
"\"\"\".strip()\n",
|
440 |
+
" encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
441 |
+
" with torch.inference_mode():\n",
|
442 |
+
" outputs = model.generate(\n",
|
443 |
+
" input_ids=encoding.input_ids,\n",
|
444 |
+
" attention_mask=encoding.attention_mask,\n",
|
445 |
+
" generation_config=generation_config,\n",
|
446 |
+
" )\n",
|
447 |
+
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
448 |
+
"\n",
|
449 |
+
" assistant_start = \"<output>:\"\n",
|
450 |
+
" response_start = response.find(assistant_start)\n",
|
451 |
+
" return response[response_start + len(assistant_start) :].strip()"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": 13,
|
457 |
+
"id": "8a9a9b87-193b-4bed-8ef1-57944d931958",
|
458 |
+
"metadata": {},
|
459 |
+
"outputs": [
|
460 |
+
{
|
461 |
+
"name": "stdout",
|
462 |
+
"output_type": "stream",
|
463 |
+
"text": [
|
464 |
+
"import pandas as pd\n",
|
465 |
+
"\n",
|
466 |
+
"\n",
|
467 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
468 |
+
"print(df)\n",
|
469 |
+
" A B\n",
|
470 |
+
"0 1 4\n",
|
471 |
+
"1 2 5\n",
|
472 |
+
"2 3 6\n",
|
473 |
+
"<output>: import pandas as pd\n",
|
474 |
+
"\n",
|
475 |
+
"\n",
|
476 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
477 |
+
"print(df)\n",
|
478 |
+
" A B\n",
|
479 |
+
"0 1 4\n",
|
480 |
+
"1 2 5\n",
|
481 |
+
"2 3 6\n",
|
482 |
+
"<output>: import pandas as pd\n",
|
483 |
+
"\n",
|
484 |
+
"\n",
|
485 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
486 |
+
"print(df)\n",
|
487 |
+
" A\n"
|
488 |
+
]
|
489 |
+
}
|
490 |
+
],
|
491 |
+
"source": [
|
492 |
+
"prompt = \"How can I create a dataframe?\"\n",
|
493 |
+
"print(generate_response(prompt))"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": 14,
|
499 |
+
"id": "4658f305-b7c6-432c-ac0c-f62bd79e9ad5",
|
500 |
+
"metadata": {},
|
501 |
+
"outputs": [
|
502 |
+
{
|
503 |
+
"name": "stdout",
|
504 |
+
"output_type": "stream",
|
505 |
+
"text": [
|
506 |
+
"import pandas as pd\n",
|
507 |
+
"\n",
|
508 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
509 |
+
"df2 = pd.DataFrame({'C': [7, 8, 9], 'D': [10, 11, 12]})\n",
|
510 |
+
"\n",
|
511 |
+
"# merge df1 and df2\n",
|
512 |
+
"result = ...\n",
|
513 |
+
"\n",
|
514 |
+
"print(result)\n",
|
515 |
+
"\n",
|
516 |
+
"# Expected output\n",
|
517 |
+
"# A B C D\n",
|
518 |
+
"# 0 1 4 7 10\n",
|
519 |
+
"# 1 2 5 8 11\n",
|
520 |
+
"# 2 3 6 9 12\n",
|
521 |
+
"<output>: import pandas as pd\n",
|
522 |
+
"\n",
|
523 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]\n"
|
524 |
+
]
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"source": [
|
528 |
+
"prompt = \"How to merge two dataframes?\"\n",
|
529 |
+
"print(generate_response(prompt))"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 15,
|
535 |
+
"id": "0e9ed231-4a62-4331-94df-f3bcd601f138",
|
536 |
+
"metadata": {},
|
537 |
+
"outputs": [
|
538 |
+
{
|
539 |
+
"name": "stdout",
|
540 |
+
"output_type": "stream",
|
541 |
+
"text": [
|
542 |
+
"import pandas as pd\n",
|
543 |
+
"\n",
|
544 |
+
"\n",
|
545 |
+
"name=['joy','shan']\n",
|
546 |
+
"roll_no=[1,2]\n",
|
547 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
548 |
+
"print(df)\n",
|
549 |
+
"\n",
|
550 |
+
"\n",
|
551 |
+
" name roll_no\n",
|
552 |
+
"0 joy 1\n",
|
553 |
+
"1 shan 2\n",
|
554 |
+
"<output>: import pandas as pd\n",
|
555 |
+
"\n",
|
556 |
+
"\n",
|
557 |
+
"name=['joy','shan']\n",
|
558 |
+
"roll_no=[1,2]\n",
|
559 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
560 |
+
"print(df)\n",
|
561 |
+
"\n",
|
562 |
+
"\n",
|
563 |
+
" name roll_no\n",
|
564 |
+
"0 joy 1\n",
|
565 |
+
"1 shan 2\n",
|
566 |
+
"<output>: import pandas as pd\n",
|
567 |
+
"\n",
|
568 |
+
"\n",
|
569 |
+
"name=['joy','shan']\n",
|
570 |
+
"roll_no=[1,2]\n",
|
571 |
+
"df = pd.DataFrame({\n"
|
572 |
+
]
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"source": [
|
576 |
+
"prompt = \"given two arrays name=['joy','shan'], roll_no=[1,2]. put these array in a dataframe ?\"\n",
|
577 |
+
"print(generate_response(prompt))"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"execution_count": 16,
|
583 |
+
"id": "381ba5c0-276d-411e-a8d5-9f010528433d",
|
584 |
+
"metadata": {},
|
585 |
+
"outputs": [
|
586 |
+
{
|
587 |
+
"name": "stdout",
|
588 |
+
"output_type": "stream",
|
589 |
+
"text": [
|
590 |
+
"import matplotlib.pyplot as plt\n",
|
591 |
+
"\n",
|
592 |
+
"x = range(10)\n",
|
593 |
+
"y = range(10)\n",
|
594 |
+
"\n",
|
595 |
+
"plt.plot(x, y, label='line')\n",
|
596 |
+
"plt.scatter(x, y, label='scatter')\n",
|
597 |
+
"plt.bar(x, y, label='bar')\n",
|
598 |
+
"plt.hist(x, y, label='hist')\n",
|
599 |
+
"plt.legend()\n",
|
600 |
+
"plt.show()\n",
|
601 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
602 |
+
"\n",
|
603 |
+
"x = range(10)\n",
|
604 |
+
"y = range(10)\n",
|
605 |
+
"\n",
|
606 |
+
"plt.plot(x, y, label='line')\n",
|
607 |
+
"plt.scatter(x, y, label='scatter')\n",
|
608 |
+
"plt.bar(x, y, label='bar')\n",
|
609 |
+
"plt.hist(x, y, label='hist')\n",
|
610 |
+
"pl\n"
|
611 |
+
]
|
612 |
+
}
|
613 |
+
],
|
614 |
+
"source": [
|
615 |
+
"prompt = \"can you plot all types of plots in matplotlib?\"\n",
|
616 |
+
"print(generate_response(prompt))"
|
617 |
+
]
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"cell_type": "code",
|
621 |
+
"execution_count": 19,
|
622 |
+
"id": "6864c3c7-b721-48ca-8943-dcff9838f7d2",
|
623 |
+
"metadata": {},
|
624 |
+
"outputs": [
|
625 |
+
{
|
626 |
+
"name": "stdout",
|
627 |
+
"output_type": "stream",
|
628 |
+
"text": [
|
629 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
630 |
+
]
|
631 |
+
}
|
632 |
+
],
|
633 |
+
"source": [
|
634 |
+
"prompt = \"\"\"Problem:\n",
|
635 |
+
"i got an issue over ranking of date times. Lets say i have following table.\n",
|
636 |
+
"ID TIME\n",
|
637 |
+
"01 2018-07-11 11:12:20\n",
|
638 |
+
"01 2018-07-12 12:00:23\n",
|
639 |
+
"01 2018-07-13 12:00:00\n",
|
640 |
+
"02 2019-09-11 11:00:00\n",
|
641 |
+
"02 2019-09-12 12:00:00\n",
|
642 |
+
"\n",
|
643 |
+
"\n",
|
644 |
+
"and i want to add another column to rank the table by time for each id and group. I used \n",
|
645 |
+
"df['RANK'] = data.groupby('ID')['TIME'].rank(ascending=True)\n",
|
646 |
+
"\n",
|
647 |
+
"\n",
|
648 |
+
"but get an error:\n",
|
649 |
+
"'NoneType' object is not callable\n",
|
650 |
+
"\n",
|
651 |
+
"\n",
|
652 |
+
"If i replace datetime to numbers, it works.... any solutions?\n",
|
653 |
+
"\"\"\"\n",
|
654 |
+
"print(generate_response(prompt))"
|
655 |
+
]
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"cell_type": "code",
|
659 |
+
"execution_count": 20,
|
660 |
+
"id": "7fa02929-5c65-4aa6-81ce-9c51879e7535",
|
661 |
+
"metadata": {},
|
662 |
+
"outputs": [
|
663 |
+
{
|
664 |
+
"name": "stdout",
|
665 |
+
"output_type": "stream",
|
666 |
+
"text": [
|
667 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
668 |
+
]
|
669 |
+
}
|
670 |
+
],
|
671 |
+
"source": [
|
672 |
+
"prompt = \"\"\"Problem:\n",
|
673 |
+
"I have the following dataframe:\n",
|
674 |
+
"index = range(14)\n",
|
675 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
676 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
677 |
+
"\n",
|
678 |
+
"\n",
|
679 |
+
"How can I fill the zeros with the maximun between previous and posterior non-zero value using pandas? Is there a fillna that is not just for \"NaN\"?. \n",
|
680 |
+
"The output should look like:\n",
|
681 |
+
" A\n",
|
682 |
+
"0 1\n",
|
683 |
+
"1 2\n",
|
684 |
+
"2 2\n",
|
685 |
+
"3 2\n",
|
686 |
+
"4 4\n",
|
687 |
+
"5 4\n",
|
688 |
+
"6 6\n",
|
689 |
+
"7 8\n",
|
690 |
+
"8 8\n",
|
691 |
+
"9 8\n",
|
692 |
+
"10 8\n",
|
693 |
+
"11 8\n",
|
694 |
+
"12 2\n",
|
695 |
+
"13 1\n",
|
696 |
+
"\"\"\"\n",
|
697 |
+
"\n",
|
698 |
+
"print(generate_response(prompt))"
|
699 |
+
]
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"cell_type": "code",
|
703 |
+
"execution_count": 27,
|
704 |
+
"id": "255cc021-5f5e-46af-a75e-a435b9629cdf",
|
705 |
+
"metadata": {},
|
706 |
+
"outputs": [
|
707 |
+
{
|
708 |
+
"name": "stdout",
|
709 |
+
"output_type": "stream",
|
710 |
+
"text": [
|
711 |
+
"Problem:\n",
|
712 |
+
"My sample df has four columns with NaN values. The goal is to concatenate all the keywords rows while excluding the NaN values.\n",
|
713 |
+
"import pandas as pd\n",
|
714 |
+
"import numpy as np\n",
|
715 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
716 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
717 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
718 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
719 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
720 |
+
"\n",
|
721 |
+
"\n",
|
722 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3\n",
|
723 |
+
"0 Hu Tao a d NaN f\n",
|
724 |
+
"1 Zhongli NaN e NaN NaN\n",
|
725 |
+
"2 Xingqiu c NaN b g\n",
|
726 |
+
"\n",
|
727 |
+
"\n",
|
728 |
+
"Want to accomplish the following:\n",
|
729 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3 keywords_all\n",
|
730 |
+
"0 Hu Tao a d NaN f a-d-f\n",
|
731 |
+
"1 Zhongli NaN e NaN NaN e\n",
|
732 |
+
"2 Xingqiu c NaN b g c-b-g\n",
|
733 |
+
"\n",
|
734 |
+
"\n",
|
735 |
+
"Pseudo code:\n",
|
736 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
737 |
+
"df[\"keywords_all\"] = df[\"keywords_all\"].apply(lambda cols: \"-\".join(cols), axis=1)\n",
|
738 |
+
"\n",
|
739 |
+
"\n",
|
740 |
+
"I know I can use \"-\".join() to get the exact result, but I am unsure how to pass the column names into the function.\n"
|
741 |
+
]
|
742 |
+
}
|
743 |
+
],
|
744 |
+
"source": [
|
745 |
+
"print(data[5]['question'])"
|
746 |
+
]
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"cell_type": "code",
|
750 |
+
"execution_count": 28,
|
751 |
+
"id": "1c5841e9-4331-4185-a7ad-7dd00d4e13b1",
|
752 |
+
"metadata": {},
|
753 |
+
"outputs": [
|
754 |
+
{
|
755 |
+
"name": "stdout",
|
756 |
+
"output_type": "stream",
|
757 |
+
"text": [
|
758 |
+
"import pandas as pd\n",
|
759 |
+
"import numpy as np\n",
|
760 |
+
"\n",
|
761 |
+
"\n",
|
762 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
763 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
764 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
765 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
766 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
767 |
+
"import numpy as np\n",
|
768 |
+
"def g(df):\n",
|
769 |
+
" df[\"keywords_all\"] = df.filter(like='keyword').apply(lambda x: '-'.join(x.dropna()), axis=1)\n",
|
770 |
+
" return df\n",
|
771 |
+
"\n",
|
772 |
+
"df = g(df.copy())\n",
|
773 |
+
"result = df\n",
|
774 |
+
"print(result)\n"
|
775 |
+
]
|
776 |
+
}
|
777 |
+
],
|
778 |
+
"source": [
|
779 |
+
"print(data[5]['answer'])"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"execution_count": 29,
|
785 |
+
"id": "090e98c3-78db-4e33-af4b-01c6e1fc23d0",
|
786 |
+
"metadata": {},
|
787 |
+
"outputs": [
|
788 |
+
{
|
789 |
+
"name": "stdout",
|
790 |
+
"output_type": "stream",
|
791 |
+
"text": [
|
792 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
793 |
+
]
|
794 |
+
}
|
795 |
+
],
|
796 |
+
"source": [
|
797 |
+
"prompt = data[5]['question']\n",
|
798 |
+
"print(generate_response(prompt))"
|
799 |
+
]
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"cell_type": "code",
|
803 |
+
"execution_count": null,
|
804 |
+
"id": "29609669-1ac7-4f6a-b0e3-64a3bf7a6545",
|
805 |
+
"metadata": {},
|
806 |
+
"outputs": [],
|
807 |
+
"source": []
|
808 |
+
}
|
809 |
+
],
|
810 |
+
"metadata": {
|
811 |
+
"kernelspec": {
|
812 |
+
"display_name": "Python 3 (ipykernel)",
|
813 |
+
"language": "python",
|
814 |
+
"name": "python3"
|
815 |
+
},
|
816 |
+
"language_info": {
|
817 |
+
"codemirror_mode": {
|
818 |
+
"name": "ipython",
|
819 |
+
"version": 3
|
820 |
+
},
|
821 |
+
"file_extension": ".py",
|
822 |
+
"mimetype": "text/x-python",
|
823 |
+
"name": "python",
|
824 |
+
"nbconvert_exporter": "python",
|
825 |
+
"pygments_lexer": "ipython3",
|
826 |
+
"version": "3.10.13"
|
827 |
+
}
|
828 |
+
},
|
829 |
+
"nbformat": 4,
|
830 |
+
"nbformat_minor": 5
|
831 |
+
}
|
.ipynb_checkpoints/Testv4-checkpoint.ipynb
ADDED
@@ -0,0 +1,698 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 11,
|
6 |
+
"id": "addd199c-097c-419d-a0f2-c3d73efb8d5d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import json\n",
|
11 |
+
"import os\n",
|
12 |
+
"from pprint import pprint\n",
|
13 |
+
"\n",
|
14 |
+
"import bitsandbytes as bnb\n",
|
15 |
+
"import pandas as pd\n",
|
16 |
+
"import torch\n",
|
17 |
+
"import torch.nn as nn\n",
|
18 |
+
"\n",
|
19 |
+
"import transformers\n",
|
20 |
+
"from datasets import load_dataset\n",
|
21 |
+
"from huggingface_hub import notebook_login\n",
|
22 |
+
"from peft import (\n",
|
23 |
+
" LoraConfig,\n",
|
24 |
+
" PeftConfig,\n",
|
25 |
+
" PeftModel,\n",
|
26 |
+
" get_peft_model,\n",
|
27 |
+
" prepare_model_for_kbit_training,\n",
|
28 |
+
")\n",
|
29 |
+
"from transformers import (\n",
|
30 |
+
" AutoConfig,\n",
|
31 |
+
" AutoModelForCausalLM,\n",
|
32 |
+
" AutoTokenizer,\n",
|
33 |
+
" BitsAndBytesConfig,\n",
|
34 |
+
")\n",
|
35 |
+
"import warnings\n",
|
36 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
37 |
+
"\n",
|
38 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 2,
|
44 |
+
"id": "acfb1578-a66f-44f0-8df9-1c6bcf7530ea",
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [
|
47 |
+
{
|
48 |
+
"data": {
|
49 |
+
"application/vnd.jupyter.widget-view+json": {
|
50 |
+
"model_id": "b92bb6f7a2784be8bf5cab2ee87292ff",
|
51 |
+
"version_major": 2,
|
52 |
+
"version_minor": 0
|
53 |
+
},
|
54 |
+
"text/plain": [
|
55 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
"metadata": {},
|
59 |
+
"output_type": "display_data"
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"source": [
|
63 |
+
"notebook_login()"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 3,
|
69 |
+
"id": "d2f13cac-1536-4da0-8ff7-0a0454fd0b4a",
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"with open(\"ds1000-test-cleaned.json\") as json_file:\n",
|
74 |
+
" data = json.load(json_file)"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 5,
|
80 |
+
"id": "6706e68b-d525-4392-ab2c-1dff356da52d",
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [
|
83 |
+
{
|
84 |
+
"name": "stdout",
|
85 |
+
"output_type": "stream",
|
86 |
+
"text": [
|
87 |
+
"{'answer': 'import pandas as pd\\n'\n",
|
88 |
+
" '\\n'\n",
|
89 |
+
" '\\n'\n",
|
90 |
+
" 'index = range(14)\\n'\n",
|
91 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
92 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
93 |
+
" 'def g(df):\\n'\n",
|
94 |
+
" \" l = df['A'].replace(to_replace=0, method='ffill')\\n\"\n",
|
95 |
+
" \" r = df['A'].replace(to_replace=0, method='bfill')\\n\"\n",
|
96 |
+
" ' for i in range(len(df)):\\n'\n",
|
97 |
+
" \" df['A'].iloc[i] = max(l[i], r[i])\\n\"\n",
|
98 |
+
" ' return df\\n'\n",
|
99 |
+
" '\\n'\n",
|
100 |
+
" 'df = g(df.copy())\\n'\n",
|
101 |
+
" 'result = df\\n'\n",
|
102 |
+
" 'print(result)',\n",
|
103 |
+
" 'question': 'Problem:\\n'\n",
|
104 |
+
" 'I have the following dataframe:\\n'\n",
|
105 |
+
" 'index = range(14)\\n'\n",
|
106 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
107 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
108 |
+
" '\\n'\n",
|
109 |
+
" '\\n'\n",
|
110 |
+
" 'How can I fill the zeros with the maximun between previous and '\n",
|
111 |
+
" 'posterior non-zero value using pandas? Is there a fillna that is '\n",
|
112 |
+
" 'not just for \"NaN\"?. \\n'\n",
|
113 |
+
" 'The output should look like:\\n'\n",
|
114 |
+
" ' A\\n'\n",
|
115 |
+
" '0 1\\n'\n",
|
116 |
+
" '1 2\\n'\n",
|
117 |
+
" '2 2\\n'\n",
|
118 |
+
" '3 2\\n'\n",
|
119 |
+
" '4 4\\n'\n",
|
120 |
+
" '5 4\\n'\n",
|
121 |
+
" '6 6\\n'\n",
|
122 |
+
" '7 8\\n'\n",
|
123 |
+
" '8 8\\n'\n",
|
124 |
+
" '9 8\\n'\n",
|
125 |
+
" '10 8\\n'\n",
|
126 |
+
" '11 8\\n'\n",
|
127 |
+
" '12 2\\n'\n",
|
128 |
+
" '13 1'}\n"
|
129 |
+
]
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"source": [
|
133 |
+
"pprint(data[0])"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 6,
|
139 |
+
"id": "9cc4983a-9a3f-485f-983f-efe2f10ce516",
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [],
|
142 |
+
"source": [
|
143 |
+
"with open(\"ds1000-test-cleaned.json\", \"w\") as f:\n",
|
144 |
+
" json.dump(data, f)"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": 7,
|
150 |
+
"id": "f45c3674-4eed-4ca5-8343-2184ff1e4da1",
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [
|
153 |
+
{
|
154 |
+
"data": {
|
155 |
+
"text/html": [
|
156 |
+
"<div>\n",
|
157 |
+
"<style scoped>\n",
|
158 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
159 |
+
" vertical-align: middle;\n",
|
160 |
+
" }\n",
|
161 |
+
"\n",
|
162 |
+
" .dataframe tbody tr th {\n",
|
163 |
+
" vertical-align: top;\n",
|
164 |
+
" }\n",
|
165 |
+
"\n",
|
166 |
+
" .dataframe thead th {\n",
|
167 |
+
" text-align: right;\n",
|
168 |
+
" }\n",
|
169 |
+
"</style>\n",
|
170 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
171 |
+
" <thead>\n",
|
172 |
+
" <tr style=\"text-align: right;\">\n",
|
173 |
+
" <th></th>\n",
|
174 |
+
" <th>question</th>\n",
|
175 |
+
" <th>answer</th>\n",
|
176 |
+
" </tr>\n",
|
177 |
+
" </thead>\n",
|
178 |
+
" <tbody>\n",
|
179 |
+
" <tr>\n",
|
180 |
+
" <th>0</th>\n",
|
181 |
+
" <td>Problem:\\nI have the following dataframe:\\nind...</td>\n",
|
182 |
+
" <td>import pandas as pd\\n\\n\\nindex = range(14)\\nda...</td>\n",
|
183 |
+
" </tr>\n",
|
184 |
+
" <tr>\n",
|
185 |
+
" <th>1</th>\n",
|
186 |
+
" <td>Problem:\\ni got an issue over ranking of date ...</td>\n",
|
187 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I...</td>\n",
|
188 |
+
" </tr>\n",
|
189 |
+
" <tr>\n",
|
190 |
+
" <th>2</th>\n",
|
191 |
+
" <td>Problem:\\nI have a DataFrame like :\\n 0 ...</td>\n",
|
192 |
+
" <td>import pandas as pd\\nimport numpy as np\\n\\ndf ...</td>\n",
|
193 |
+
" </tr>\n",
|
194 |
+
" <tr>\n",
|
195 |
+
" <th>3</th>\n",
|
196 |
+
" <td>Problem:\\nI have this Pandas dataframe (df):\\n...</td>\n",
|
197 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A...</td>\n",
|
198 |
+
" </tr>\n",
|
199 |
+
" <tr>\n",
|
200 |
+
" <th>4</th>\n",
|
201 |
+
" <td>Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic...</td>\n",
|
202 |
+
" <td>import pandas as pd\\n\\ndf = pd.DataFrame.from_...</td>\n",
|
203 |
+
" </tr>\n",
|
204 |
+
" </tbody>\n",
|
205 |
+
"</table>\n",
|
206 |
+
"</div>"
|
207 |
+
],
|
208 |
+
"text/plain": [
|
209 |
+
" question \\\n",
|
210 |
+
"0 Problem:\\nI have the following dataframe:\\nind... \n",
|
211 |
+
"1 Problem:\\ni got an issue over ranking of date ... \n",
|
212 |
+
"2 Problem:\\nI have a DataFrame like :\\n 0 ... \n",
|
213 |
+
"3 Problem:\\nI have this Pandas dataframe (df):\\n... \n",
|
214 |
+
"4 Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic... \n",
|
215 |
+
"\n",
|
216 |
+
" answer \n",
|
217 |
+
"0 import pandas as pd\\n\\n\\nindex = range(14)\\nda... \n",
|
218 |
+
"1 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I... \n",
|
219 |
+
"2 import pandas as pd\\nimport numpy as np\\n\\ndf ... \n",
|
220 |
+
"3 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A... \n",
|
221 |
+
"4 import pandas as pd\\n\\ndf = pd.DataFrame.from_... "
|
222 |
+
]
|
223 |
+
},
|
224 |
+
"execution_count": 7,
|
225 |
+
"metadata": {},
|
226 |
+
"output_type": "execute_result"
|
227 |
+
}
|
228 |
+
],
|
229 |
+
"source": [
|
230 |
+
"pd.DataFrame(data).head()"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": 9,
|
236 |
+
"id": "6fbdd3ad-062f-4744-bb8e-1c19950adfd5",
|
237 |
+
"metadata": {},
|
238 |
+
"outputs": [],
|
239 |
+
"source": [
|
240 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
241 |
+
" load_in_4bit=True,\n",
|
242 |
+
" bnb_4bit_use_double_quant=True,\n",
|
243 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
244 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
245 |
+
")"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": 12,
|
251 |
+
"id": "2b5ae38c-b0d2-4b9a-acde-3370130ca6e7",
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [
|
254 |
+
{
|
255 |
+
"data": {
|
256 |
+
"application/vnd.jupyter.widget-view+json": {
|
257 |
+
"model_id": "3d6c5533e9ea48e295b7fdfd96da6d47",
|
258 |
+
"version_major": 2,
|
259 |
+
"version_minor": 0
|
260 |
+
},
|
261 |
+
"text/plain": [
|
262 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
"metadata": {},
|
266 |
+
"output_type": "display_data"
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"name": "stderr",
|
270 |
+
"output_type": "stream",
|
271 |
+
"text": [
|
272 |
+
"Some weights of LlamaForCausalLM were not initialized from the model checkpoint at deepseek-ai/deepseek-coder-6.7b-instruct and are newly initialized: ['model.layers.16.self_attn.rotary_emb.inv_freq', 'model.layers.11.self_attn.rotary_emb.inv_freq', 'model.layers.13.self_attn.rotary_emb.inv_freq', 'model.layers.27.self_attn.rotary_emb.inv_freq', 'model.layers.28.self_attn.rotary_emb.inv_freq', 'model.layers.10.self_attn.rotary_emb.inv_freq', 'model.layers.14.self_attn.rotary_emb.inv_freq', 'model.layers.24.self_attn.rotary_emb.inv_freq', 'model.layers.3.self_attn.rotary_emb.inv_freq', 'model.layers.9.self_attn.rotary_emb.inv_freq', 'model.layers.29.self_attn.rotary_emb.inv_freq', 'model.layers.6.self_attn.rotary_emb.inv_freq', 'model.layers.8.self_attn.rotary_emb.inv_freq', 'model.layers.22.self_attn.rotary_emb.inv_freq', 'model.layers.0.self_attn.rotary_emb.inv_freq', 'model.layers.25.self_attn.rotary_emb.inv_freq', 'model.layers.12.self_attn.rotary_emb.inv_freq', 'model.layers.26.self_attn.rotary_emb.inv_freq', 'model.layers.2.self_attn.rotary_emb.inv_freq', 'model.layers.31.self_attn.rotary_emb.inv_freq', 'model.layers.1.self_attn.rotary_emb.inv_freq', 'model.layers.4.self_attn.rotary_emb.inv_freq', 'model.layers.23.self_attn.rotary_emb.inv_freq', 'model.layers.15.self_attn.rotary_emb.inv_freq', 'model.layers.7.self_attn.rotary_emb.inv_freq', 'model.layers.21.self_attn.rotary_emb.inv_freq', 'model.layers.20.self_attn.rotary_emb.inv_freq', 'model.layers.19.self_attn.rotary_emb.inv_freq', 'model.layers.30.self_attn.rotary_emb.inv_freq', 'model.layers.18.self_attn.rotary_emb.inv_freq', 'model.layers.17.self_attn.rotary_emb.inv_freq', 'model.layers.5.self_attn.rotary_emb.inv_freq']\n",
|
273 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
274 |
+
]
|
275 |
+
}
|
276 |
+
],
|
277 |
+
"source": [
|
278 |
+
"PEFT_MODEL = \"shanjay/ds-dsc\"\n",
|
279 |
+
"\n",
|
280 |
+
"config = PeftConfig.from_pretrained(PEFT_MODEL)\n",
|
281 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
282 |
+
" config.base_model_name_or_path,\n",
|
283 |
+
" return_dict=True,\n",
|
284 |
+
" quantization_config=bnb_config,\n",
|
285 |
+
" device_map=\"auto\",\n",
|
286 |
+
" trust_remote_code=True,\n",
|
287 |
+
")\n",
|
288 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
289 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
290 |
+
"\n",
|
291 |
+
"model = PeftModel.from_pretrained(model, PEFT_MODEL)"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": 13,
|
297 |
+
"id": "7c3e35e0-f77c-4d63-8e2b-e72027341e31",
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [],
|
300 |
+
"source": [
|
301 |
+
"generation_config = model.generation_config\n",
|
302 |
+
"generation_config.max_new_tokens = 200\n",
|
303 |
+
"generation_config.temperature = 0.7\n",
|
304 |
+
"generation_config.top_p = 0.7\n",
|
305 |
+
"generation_config.num_return_sequences = 1\n",
|
306 |
+
"generation_config.pad_token_id = tokenizer.eos_token_id\n",
|
307 |
+
"generation_config.eos_token_id = tokenizer.eos_token_id"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "code",
|
312 |
+
"execution_count": 14,
|
313 |
+
"id": "aee4385b-d855-4225-9532-4e9002322579",
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [],
|
316 |
+
"source": [
|
317 |
+
"DEVICE = \"cuda:0\""
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": 15,
|
323 |
+
"id": "7b14a1c6-ac62-4a9c-9df9-0db50facfd7e",
|
324 |
+
"metadata": {},
|
325 |
+
"outputs": [
|
326 |
+
{
|
327 |
+
"name": "stdout",
|
328 |
+
"output_type": "stream",
|
329 |
+
"text": [
|
330 |
+
"<instruction>: How can I create a dataframe?\n",
|
331 |
+
"<output>:\n",
|
332 |
+
"import pandas as pd\n",
|
333 |
+
"import numpy as np\n",
|
334 |
+
"\n",
|
335 |
+
"df = pd.DataFrame(\n",
|
336 |
+
" {\n",
|
337 |
+
" \"A\": np.array([1, 2, 3]),\n",
|
338 |
+
" \"B\": np.array([4, 5, 6]),\n",
|
339 |
+
" \"C\": np.array([7, 8, 9]),\n",
|
340 |
+
" }\n",
|
341 |
+
")\n",
|
342 |
+
"</output>\n",
|
343 |
+
"BEGIN SOLUTION\n",
|
344 |
+
"<output>\n",
|
345 |
+
"[1]\n",
|
346 |
+
"<code>\n",
|
347 |
+
"[python]\n",
|
348 |
+
"# Your code here\n",
|
349 |
+
"</code>\n",
|
350 |
+
"</output>\n",
|
351 |
+
"END SOLUTION\n",
|
352 |
+
"<output>\n",
|
353 |
+
"[1]\n",
|
354 |
+
"<code>\n",
|
355 |
+
"[python]\n",
|
356 |
+
"print(df)\n",
|
357 |
+
"</code>\n",
|
358 |
+
"</output>\n",
|
359 |
+
"\n",
|
360 |
+
"<assistant>: df = pd.DataFrame(\n",
|
361 |
+
" {\n",
|
362 |
+
" \"A\": np.array([1, 2, 3]),\n",
|
363 |
+
"CPU times: user 27.4 s, sys: 372 ms, total: 27.8 s\n",
|
364 |
+
"Wall time: 27.9 s\n"
|
365 |
+
]
|
366 |
+
}
|
367 |
+
],
|
368 |
+
"source": [
|
369 |
+
"%%time\n",
|
370 |
+
"prompt = f\"\"\"\n",
|
371 |
+
"<instruction>: How can I create a dataframe?\n",
|
372 |
+
"<output>:\n",
|
373 |
+
"\"\"\".strip()\n",
|
374 |
+
"\n",
|
375 |
+
"encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
376 |
+
"with torch.inference_mode():\n",
|
377 |
+
" outputs = model.generate(\n",
|
378 |
+
" input_ids=encoding.input_ids,\n",
|
379 |
+
" attention_mask=encoding.attention_mask,\n",
|
380 |
+
" generation_config=generation_config,\n",
|
381 |
+
" )\n",
|
382 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
383 |
+
]
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"cell_type": "code",
|
387 |
+
"execution_count": 16,
|
388 |
+
"id": "93c95988-c563-4871-974d-004bf73fbce8",
|
389 |
+
"metadata": {},
|
390 |
+
"outputs": [],
|
391 |
+
"source": [
|
392 |
+
"def generate_response(question: str) -> str:\n",
|
393 |
+
" prompt = f\"\"\"\n",
|
394 |
+
"<instruction>: {question}\n",
|
395 |
+
"<output>:\n",
|
396 |
+
"\"\"\".strip()\n",
|
397 |
+
" encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
398 |
+
" with torch.inference_mode():\n",
|
399 |
+
" outputs = model.generate(\n",
|
400 |
+
" input_ids=encoding.input_ids,\n",
|
401 |
+
" attention_mask=encoding.attention_mask,\n",
|
402 |
+
" generation_config=generation_config,\n",
|
403 |
+
" )\n",
|
404 |
+
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
405 |
+
"\n",
|
406 |
+
" assistant_start = \"<output>:\"\n",
|
407 |
+
" response_start = response.find(assistant_start)\n",
|
408 |
+
" return response[response_start + len(assistant_start) :].strip()"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": 17,
|
414 |
+
"id": "8a9a9b87-193b-4bed-8ef1-57944d931958",
|
415 |
+
"metadata": {},
|
416 |
+
"outputs": [
|
417 |
+
{
|
418 |
+
"name": "stdout",
|
419 |
+
"output_type": "stream",
|
420 |
+
"text": [
|
421 |
+
"import pandas as pd\n",
|
422 |
+
"import numpy as np\n",
|
423 |
+
"\n",
|
424 |
+
"df = pd.DataFrame(\n",
|
425 |
+
" {\n",
|
426 |
+
" \"A\": np.array([1, 2, 3]),\n",
|
427 |
+
" \"B\": np.array([4, 5, 6]),\n",
|
428 |
+
" \"C\": np.array([7, 8, 9]),\n",
|
429 |
+
" }\n",
|
430 |
+
")\n",
|
431 |
+
"</output>\n",
|
432 |
+
"BEGIN SOLUTION\n",
|
433 |
+
"<output>\n",
|
434 |
+
"[1]\n",
|
435 |
+
"<code>\n",
|
436 |
+
"[python]\n",
|
437 |
+
"# Your code here\n",
|
438 |
+
"</code>\n",
|
439 |
+
"</output>\n",
|
440 |
+
"END SOLUTION\n",
|
441 |
+
"<output>\n",
|
442 |
+
"[1]\n",
|
443 |
+
"<code>\n",
|
444 |
+
"[python]\n",
|
445 |
+
"print(df)\n",
|
446 |
+
"</code>\n",
|
447 |
+
"</output>\n",
|
448 |
+
"\n",
|
449 |
+
"<assistant>: df = pd.DataFrame(\n",
|
450 |
+
" {\n",
|
451 |
+
" \"A\": np.array([1, 2, 3]),\n"
|
452 |
+
]
|
453 |
+
}
|
454 |
+
],
|
455 |
+
"source": [
|
456 |
+
"prompt = \"How can I create a dataframe?\"\n",
|
457 |
+
"print(generate_response(prompt))"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"cell_type": "code",
|
462 |
+
"execution_count": 18,
|
463 |
+
"id": "4658f305-b7c6-432c-ac0c-f62bd79e9ad5",
|
464 |
+
"metadata": {},
|
465 |
+
"outputs": [
|
466 |
+
{
|
467 |
+
"name": "stdout",
|
468 |
+
"output_type": "stream",
|
469 |
+
"text": [
|
470 |
+
"import pandas as pd\n",
|
471 |
+
"import numpy as np\n",
|
472 |
+
"\n",
|
473 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
474 |
+
"df2 = pd.DataFrame({'A': [4, 5, 6], 'B': [7, 8, 9]})\n",
|
475 |
+
"</output>\n",
|
476 |
+
"<assistant>: df = pd.concat([df1, df2])\n",
|
477 |
+
"</assistant>\n",
|
478 |
+
"<output>: df\n",
|
479 |
+
"</output>\n",
|
480 |
+
"<code>\n",
|
481 |
+
"import pandas as pd\n",
|
482 |
+
"import numpy as np\n",
|
483 |
+
"\n",
|
484 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
485 |
+
"df2 = pd.DataFrame({'A': [4, 5, 6],\n"
|
486 |
+
]
|
487 |
+
}
|
488 |
+
],
|
489 |
+
"source": [
|
490 |
+
"prompt = \"How to merge two dataframes?\"\n",
|
491 |
+
"print(generate_response(prompt))"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"cell_type": "code",
|
496 |
+
"execution_count": 19,
|
497 |
+
"id": "0e9ed231-4a62-4331-94df-f3bcd601f138",
|
498 |
+
"metadata": {},
|
499 |
+
"outputs": [
|
500 |
+
{
|
501 |
+
"name": "stdout",
|
502 |
+
"output_type": "stream",
|
503 |
+
"text": [
|
504 |
+
"<code>\n",
|
505 |
+
"import pandas as pd\n",
|
506 |
+
"import numpy as np\n",
|
507 |
+
"\n",
|
508 |
+
"name=np.array(['joy','shan'])\n",
|
509 |
+
"roll_no=np.array([1,2])\n",
|
510 |
+
"</code>\n",
|
511 |
+
"BEGIN SOLUTION\n",
|
512 |
+
"<code>\n",
|
513 |
+
"[insert]\n",
|
514 |
+
"</code>\n",
|
515 |
+
"END SOLUTION\n",
|
516 |
+
"<code>\n",
|
517 |
+
"print(df)\n",
|
518 |
+
"</code>\n",
|
519 |
+
"<assistant>: df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
520 |
+
"</assistant>\n",
|
521 |
+
"<code>\n",
|
522 |
+
"print(df)\n",
|
523 |
+
"</code>\n",
|
524 |
+
"\n",
|
525 |
+
"<assistant>: df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
526 |
+
"print(df)\n",
|
527 |
+
"</assistant>\n",
|
528 |
+
"<code>\n",
|
529 |
+
"print(df)\n",
|
530 |
+
"</code>\n",
|
531 |
+
"<assistant>: df = pd.\n"
|
532 |
+
]
|
533 |
+
}
|
534 |
+
],
|
535 |
+
"source": [
|
536 |
+
"prompt = \"given two arrays name=['joy','shan'], roll_no=[1,2]. put these array in a dataframe ?\"\n",
|
537 |
+
"print(generate_response(prompt))"
|
538 |
+
]
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"cell_type": "code",
|
542 |
+
"execution_count": 20,
|
543 |
+
"id": "381ba5c0-276d-411e-a8d5-9f010528433d",
|
544 |
+
"metadata": {},
|
545 |
+
"outputs": [
|
546 |
+
{
|
547 |
+
"name": "stdout",
|
548 |
+
"output_type": "stream",
|
549 |
+
"text": [
|
550 |
+
"[ ]: import matplotlib.pyplot as plt\n",
|
551 |
+
"import numpy as np\n",
|
552 |
+
"\n",
|
553 |
+
"x = np.linspace(0, 10, 100)\n",
|
554 |
+
"y = np.sin(x)\n",
|
555 |
+
"\n",
|
556 |
+
"# your code here\n",
|
557 |
+
"</output>\n",
|
558 |
+
"<assistant>: plt.plot(x, y)\n",
|
559 |
+
"plt.show()\n",
|
560 |
+
"</assistant>\n",
|
561 |
+
"<output>: [ ]: plt.plot(x, y)\n",
|
562 |
+
"plt.show()\n",
|
563 |
+
"</output>\n",
|
564 |
+
"<assistant>: plt.plot(x, y)\n",
|
565 |
+
"plt.show()\n",
|
566 |
+
"</assistant>\n",
|
567 |
+
"<output>: [ ]: plt.plot(x, y)\n",
|
568 |
+
"plt.show()\n",
|
569 |
+
"</output>\n",
|
570 |
+
"<assistant>: plt.plot(x, y)\n",
|
571 |
+
"plt.show()\n",
|
572 |
+
"</assistant>\n",
|
573 |
+
"<output>\n"
|
574 |
+
]
|
575 |
+
}
|
576 |
+
],
|
577 |
+
"source": [
|
578 |
+
"prompt = \"can you plot all types of plots in matplotlib?\"\n",
|
579 |
+
"print(generate_response(prompt))"
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"cell_type": "code",
|
584 |
+
"execution_count": 21,
|
585 |
+
"id": "6864c3c7-b721-48ca-8943-dcff9838f7d2",
|
586 |
+
"metadata": {},
|
587 |
+
"outputs": [
|
588 |
+
{
|
589 |
+
"name": "stdout",
|
590 |
+
"output_type": "stream",
|
591 |
+
"text": [
|
592 |
+
"import pandas as pd\n",
|
593 |
+
"import numpy as np\n",
|
594 |
+
"\n",
|
595 |
+
"data = pd.DataFrame({'ID': ['01', '01', '01', '02', '02'],\n",
|
596 |
+
"'TIME': ['2018-07-11 11:12:20', '2018-07-12 12:00:23', '2018-07-13 12:00:00', '2019-09-11 11:00:00', '2019-09-12 12:00:00']})\n",
|
597 |
+
"\n",
|
598 |
+
"data['TIME'] = pd.to_datetime(data['TIME'])\n",
|
599 |
+
"\n",
|
600 |
+
"</output>\n",
|
601 |
+
"BEGIN SOLUTION\n",
|
602 |
+
"<output>\n",
|
603 |
+
"[insert]\n",
|
604 |
+
"</output>\n"
|
605 |
+
]
|
606 |
+
}
|
607 |
+
],
|
608 |
+
"source": [
|
609 |
+
"prompt = \"\"\"Problem:\n",
|
610 |
+
"i got an issue over ranking of date times. Lets say i have following table.\n",
|
611 |
+
"ID TIME\n",
|
612 |
+
"01 2018-07-11 11:12:20\n",
|
613 |
+
"01 2018-07-12 12:00:23\n",
|
614 |
+
"01 2018-07-13 12:00:00\n",
|
615 |
+
"02 2019-09-11 11:00:00\n",
|
616 |
+
"02 2019-09-12 12:00:00\n",
|
617 |
+
"\n",
|
618 |
+
"\n",
|
619 |
+
"and i want to add another column to rank the table by time for each id and group. I used \n",
|
620 |
+
"df['RANK'] = data.groupby('ID')['TIME'].rank(ascending=True)\n",
|
621 |
+
"\n",
|
622 |
+
"\n",
|
623 |
+
"but get an error:\n",
|
624 |
+
"'NoneType' object is not callable\n",
|
625 |
+
"\n",
|
626 |
+
"\n",
|
627 |
+
"If i replace datetime to numbers, it works.... any solutions?\n",
|
628 |
+
"\"\"\"\n",
|
629 |
+
"print(generate_response(prompt))"
|
630 |
+
]
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"cell_type": "code",
|
634 |
+
"execution_count": null,
|
635 |
+
"id": "7fa02929-5c65-4aa6-81ce-9c51879e7535",
|
636 |
+
"metadata": {},
|
637 |
+
"outputs": [],
|
638 |
+
"source": [
|
639 |
+
"prompt = \"\"\"Problem:\n",
|
640 |
+
"I have the following dataframe:\n",
|
641 |
+
"index = range(14)\n",
|
642 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
643 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
644 |
+
"\n",
|
645 |
+
"\n",
|
646 |
+
"How can I fill the zeros with the maximun between previous and posterior non-zero value using pandas? Is there a fillna that is not just for \"NaN\"?. \n",
|
647 |
+
"The output should look like:\n",
|
648 |
+
" A\n",
|
649 |
+
"0 1\n",
|
650 |
+
"1 2\n",
|
651 |
+
"2 2\n",
|
652 |
+
"3 2\n",
|
653 |
+
"4 4\n",
|
654 |
+
"5 4\n",
|
655 |
+
"6 6\n",
|
656 |
+
"7 8\n",
|
657 |
+
"8 8\n",
|
658 |
+
"9 8\n",
|
659 |
+
"10 8\n",
|
660 |
+
"11 8\n",
|
661 |
+
"12 2\n",
|
662 |
+
"13 1\n",
|
663 |
+
"\"\"\"\n",
|
664 |
+
"\n",
|
665 |
+
"print(generate_response(prompt))"
|
666 |
+
]
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"cell_type": "code",
|
670 |
+
"execution_count": null,
|
671 |
+
"id": "255cc021-5f5e-46af-a75e-a435b9629cdf",
|
672 |
+
"metadata": {},
|
673 |
+
"outputs": [],
|
674 |
+
"source": []
|
675 |
+
}
|
676 |
+
],
|
677 |
+
"metadata": {
|
678 |
+
"kernelspec": {
|
679 |
+
"display_name": "Python 3 (ipykernel)",
|
680 |
+
"language": "python",
|
681 |
+
"name": "python3"
|
682 |
+
},
|
683 |
+
"language_info": {
|
684 |
+
"codemirror_mode": {
|
685 |
+
"name": "ipython",
|
686 |
+
"version": 3
|
687 |
+
},
|
688 |
+
"file_extension": ".py",
|
689 |
+
"mimetype": "text/x-python",
|
690 |
+
"name": "python",
|
691 |
+
"nbconvert_exporter": "python",
|
692 |
+
"pygments_lexer": "ipython3",
|
693 |
+
"version": "3.10.13"
|
694 |
+
}
|
695 |
+
},
|
696 |
+
"nbformat": 4,
|
697 |
+
"nbformat_minor": 5
|
698 |
+
}
|
.ipynb_checkpoints/ds1000-train-cleaned-checkpoint.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
07.dsc-mgc-v2.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
07.dscv4.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Prediction-mgc.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Prediction-mgc.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Test-mgc-Copy1.ipynb
ADDED
@@ -0,0 +1,1177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"id": "addd199c-097c-419d-a0f2-c3d73efb8d5d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"===================================BUG REPORT===================================\n",
|
15 |
+
"Welcome to bitsandbytes. For bug reports, please run\n",
|
16 |
+
"\n",
|
17 |
+
"python -m bitsandbytes\n",
|
18 |
+
"\n",
|
19 |
+
" and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
20 |
+
"================================================================================\n",
|
21 |
+
"bin /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so\n",
|
22 |
+
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...\n",
|
23 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so\n",
|
24 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 8.6\n",
|
25 |
+
"CUDA SETUP: Detected CUDA version 121\n",
|
26 |
+
"CUDA SETUP: Loading binary /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...\n"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "stderr",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/usr/local/nvidia/lib64'), PosixPath('/usr/local/nvidia/lib')}\n",
|
34 |
+
" warn(msg)\n",
|
35 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths...\n",
|
36 |
+
" warn(msg)\n",
|
37 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCcuY6EsmJRfLsI1l1rpDWVRhwkL7A9nzITTDbCFOX0wzshP65l/Sa54NrS1pX2uM6YiB7OvgGUm7uUKf9OBCcpd2ohFJiOkTznhDHk+D7IkFZf/VTRIHy/JZoAtzN/qBQKMOygFam1XzTMDnkehMkKvR23BgH72hzGUfYPIsq+OlStYVMhE1bncYSnC4SRucbdT5BeIsival514xsbAhCjjwPd8UHfw1cxaDq4edWjbhN8wkDU+V8i/jS/wWTZIt7pIZiAREEl/YC+Sc4FCSnb4c3p+adl5pqXrEsKygi+UmBtC1poLSXTgZOc/0kerx4jv/HB8NiH4kLsg4S2HjdFFQIB0WSV0i4KDVRE9cv18gQ7kbEv0t9Uwg4xdoMntCNS6aFDm51ufhshwQylzfSwX71Ka3mPdftfnVk81wKpIxN784FEcb7IE7HcNyomnP9N382Fg8j6pILwsKK6w4oOg8Cn2C66cySA6CNTFpK1kYBwsqdU3X8WBQUIZZNVCn4x/qRWYxrKHmdlUW8oCf9AT32eydDQWp1y0AlycA4wfbDQ8g4dtu9Rf+tBrYTztdCt5PbGy4SbwfynWysc/PuhcyaLNtuRYt3LeiCKhKJFNFST1BqjACrjkQ9kMrPSB/7j3JX9O2ncDHDQgCQIQon9BETVQZJ49EqMrusQ3/K39w== shanjay@LAPTOP-Q1PG3AE7')}\n",
|
38 |
+
" warn(msg)\n",
|
39 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('//g.notebooksg.jarvislabs.net'), PosixPath('https')}\n",
|
40 |
+
" warn(msg)\n",
|
41 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//matplotlib_inline.backend_inline')}\n",
|
42 |
+
" warn(msg)\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"import json\n",
|
48 |
+
"import os\n",
|
49 |
+
"from pprint import pprint\n",
|
50 |
+
"\n",
|
51 |
+
"import bitsandbytes as bnb\n",
|
52 |
+
"import pandas as pd\n",
|
53 |
+
"import torch\n",
|
54 |
+
"import torch.nn as nn\n",
|
55 |
+
"\n",
|
56 |
+
"import transformers\n",
|
57 |
+
"from datasets import load_dataset\n",
|
58 |
+
"from huggingface_hub import notebook_login\n",
|
59 |
+
"from peft import (\n",
|
60 |
+
" LoraConfig,\n",
|
61 |
+
" PeftConfig,\n",
|
62 |
+
" PeftModel,\n",
|
63 |
+
" get_peft_model,\n",
|
64 |
+
" prepare_model_for_kbit_training,\n",
|
65 |
+
")\n",
|
66 |
+
"from transformers import (\n",
|
67 |
+
" AutoConfig,\n",
|
68 |
+
" AutoModelForCausalLM,\n",
|
69 |
+
" AutoTokenizer,\n",
|
70 |
+
" BitsAndBytesConfig,\n",
|
71 |
+
")\n",
|
72 |
+
"import warnings\n",
|
73 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
74 |
+
"\n",
|
75 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 3,
|
81 |
+
"id": "acfb1578-a66f-44f0-8df9-1c6bcf7530ea",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [
|
84 |
+
{
|
85 |
+
"data": {
|
86 |
+
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "3edf6ee054e9464eb510d3aff9d1dc5f",
|
88 |
+
"version_major": 2,
|
89 |
+
"version_minor": 0
|
90 |
+
},
|
91 |
+
"text/plain": [
|
92 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"notebook_login()"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 4,
|
106 |
+
"id": "d2f13cac-1536-4da0-8ff7-0a0454fd0b4a",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"with open(\"ds1000-test-cleaned.json\") as json_file:\n",
|
111 |
+
" data = json.load(json_file)"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 5,
|
117 |
+
"id": "6706e68b-d525-4392-ab2c-1dff356da52d",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "stdout",
|
122 |
+
"output_type": "stream",
|
123 |
+
"text": [
|
124 |
+
"{'answer': 'import pandas as pd\\n'\n",
|
125 |
+
" '\\n'\n",
|
126 |
+
" '\\n'\n",
|
127 |
+
" 'index = range(14)\\n'\n",
|
128 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
129 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
130 |
+
" 'def g(df):\\n'\n",
|
131 |
+
" \" l = df['A'].replace(to_replace=0, method='ffill')\\n\"\n",
|
132 |
+
" \" r = df['A'].replace(to_replace=0, method='bfill')\\n\"\n",
|
133 |
+
" ' for i in range(len(df)):\\n'\n",
|
134 |
+
" \" df['A'].iloc[i] = max(l[i], r[i])\\n\"\n",
|
135 |
+
" ' return df\\n'\n",
|
136 |
+
" '\\n'\n",
|
137 |
+
" 'df = g(df.copy())\\n'\n",
|
138 |
+
" 'result = df\\n'\n",
|
139 |
+
" 'print(result)',\n",
|
140 |
+
" 'question': 'Problem:\\n'\n",
|
141 |
+
" 'I have the following dataframe:\\n'\n",
|
142 |
+
" 'index = range(14)\\n'\n",
|
143 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
144 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
145 |
+
" '\\n'\n",
|
146 |
+
" '\\n'\n",
|
147 |
+
" 'How can I fill the zeros with the maximun between previous and '\n",
|
148 |
+
" 'posterior non-zero value using pandas? Is there a fillna that is '\n",
|
149 |
+
" 'not just for \"NaN\"?. \\n'\n",
|
150 |
+
" 'The output should look like:\\n'\n",
|
151 |
+
" ' A\\n'\n",
|
152 |
+
" '0 1\\n'\n",
|
153 |
+
" '1 2\\n'\n",
|
154 |
+
" '2 2\\n'\n",
|
155 |
+
" '3 2\\n'\n",
|
156 |
+
" '4 4\\n'\n",
|
157 |
+
" '5 4\\n'\n",
|
158 |
+
" '6 6\\n'\n",
|
159 |
+
" '7 8\\n'\n",
|
160 |
+
" '8 8\\n'\n",
|
161 |
+
" '9 8\\n'\n",
|
162 |
+
" '10 8\\n'\n",
|
163 |
+
" '11 8\\n'\n",
|
164 |
+
" '12 2\\n'\n",
|
165 |
+
" '13 1'}\n"
|
166 |
+
]
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"pprint(data[0])"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 6,
|
176 |
+
"id": "9cc4983a-9a3f-485f-983f-efe2f10ce516",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"with open(\"ds1000-test-cleaned.json\", \"w\") as f:\n",
|
181 |
+
" json.dump(data, f)"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 7,
|
187 |
+
"id": "f45c3674-4eed-4ca5-8343-2184ff1e4da1",
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"data": {
|
192 |
+
"text/html": [
|
193 |
+
"<div>\n",
|
194 |
+
"<style scoped>\n",
|
195 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
196 |
+
" vertical-align: middle;\n",
|
197 |
+
" }\n",
|
198 |
+
"\n",
|
199 |
+
" .dataframe tbody tr th {\n",
|
200 |
+
" vertical-align: top;\n",
|
201 |
+
" }\n",
|
202 |
+
"\n",
|
203 |
+
" .dataframe thead th {\n",
|
204 |
+
" text-align: right;\n",
|
205 |
+
" }\n",
|
206 |
+
"</style>\n",
|
207 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
208 |
+
" <thead>\n",
|
209 |
+
" <tr style=\"text-align: right;\">\n",
|
210 |
+
" <th></th>\n",
|
211 |
+
" <th>question</th>\n",
|
212 |
+
" <th>answer</th>\n",
|
213 |
+
" </tr>\n",
|
214 |
+
" </thead>\n",
|
215 |
+
" <tbody>\n",
|
216 |
+
" <tr>\n",
|
217 |
+
" <th>0</th>\n",
|
218 |
+
" <td>Problem:\\nI have the following dataframe:\\nind...</td>\n",
|
219 |
+
" <td>import pandas as pd\\n\\n\\nindex = range(14)\\nda...</td>\n",
|
220 |
+
" </tr>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>1</th>\n",
|
223 |
+
" <td>Problem:\\ni got an issue over ranking of date ...</td>\n",
|
224 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I...</td>\n",
|
225 |
+
" </tr>\n",
|
226 |
+
" <tr>\n",
|
227 |
+
" <th>2</th>\n",
|
228 |
+
" <td>Problem:\\nI have a DataFrame like :\\n 0 ...</td>\n",
|
229 |
+
" <td>import pandas as pd\\nimport numpy as np\\n\\ndf ...</td>\n",
|
230 |
+
" </tr>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <th>3</th>\n",
|
233 |
+
" <td>Problem:\\nI have this Pandas dataframe (df):\\n...</td>\n",
|
234 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A...</td>\n",
|
235 |
+
" </tr>\n",
|
236 |
+
" <tr>\n",
|
237 |
+
" <th>4</th>\n",
|
238 |
+
" <td>Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic...</td>\n",
|
239 |
+
" <td>import pandas as pd\\n\\ndf = pd.DataFrame.from_...</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" </tbody>\n",
|
242 |
+
"</table>\n",
|
243 |
+
"</div>"
|
244 |
+
],
|
245 |
+
"text/plain": [
|
246 |
+
" question \\\n",
|
247 |
+
"0 Problem:\\nI have the following dataframe:\\nind... \n",
|
248 |
+
"1 Problem:\\ni got an issue over ranking of date ... \n",
|
249 |
+
"2 Problem:\\nI have a DataFrame like :\\n 0 ... \n",
|
250 |
+
"3 Problem:\\nI have this Pandas dataframe (df):\\n... \n",
|
251 |
+
"4 Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic... \n",
|
252 |
+
"\n",
|
253 |
+
" answer \n",
|
254 |
+
"0 import pandas as pd\\n\\n\\nindex = range(14)\\nda... \n",
|
255 |
+
"1 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I... \n",
|
256 |
+
"2 import pandas as pd\\nimport numpy as np\\n\\ndf ... \n",
|
257 |
+
"3 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A... \n",
|
258 |
+
"4 import pandas as pd\\n\\ndf = pd.DataFrame.from_... "
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"execution_count": 7,
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "execute_result"
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"pd.DataFrame(data).head()"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": 8,
|
273 |
+
"id": "6fbdd3ad-062f-4744-bb8e-1c19950adfd5",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
278 |
+
" load_in_4bit=True,\n",
|
279 |
+
" bnb_4bit_use_double_quant=True,\n",
|
280 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
281 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
282 |
+
")"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 9,
|
288 |
+
"id": "2b5ae38c-b0d2-4b9a-acde-3370130ca6e7",
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [
|
291 |
+
{
|
292 |
+
"data": {
|
293 |
+
"application/vnd.jupyter.widget-view+json": {
|
294 |
+
"model_id": "2be27a54d3e14399a41c46cd9c423399",
|
295 |
+
"version_major": 2,
|
296 |
+
"version_minor": 0
|
297 |
+
},
|
298 |
+
"text/plain": [
|
299 |
+
"Loading checkpoint shards: 0%| | 0/6 [00:00<?, ?it/s]"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
"metadata": {},
|
303 |
+
"output_type": "display_data"
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"name": "stderr",
|
307 |
+
"output_type": "stream",
|
308 |
+
"text": [
|
309 |
+
"Some weights of LlamaForCausalLM were not initialized from the model checkpoint at ise-uiuc/Magicoder-S-DS-6.7B and are newly initialized: ['model.layers.2.self_attn.rotary_emb.inv_freq', 'model.layers.6.self_attn.rotary_emb.inv_freq', 'model.layers.25.self_attn.rotary_emb.inv_freq', 'model.layers.15.self_attn.rotary_emb.inv_freq', 'model.layers.1.self_attn.rotary_emb.inv_freq', 'model.layers.7.self_attn.rotary_emb.inv_freq', 'model.layers.18.self_attn.rotary_emb.inv_freq', 'model.layers.17.self_attn.rotary_emb.inv_freq', 'model.layers.4.self_attn.rotary_emb.inv_freq', 'model.layers.30.self_attn.rotary_emb.inv_freq', 'model.layers.12.self_attn.rotary_emb.inv_freq', 'model.layers.10.self_attn.rotary_emb.inv_freq', 'model.layers.24.self_attn.rotary_emb.inv_freq', 'model.layers.23.self_attn.rotary_emb.inv_freq', 'model.layers.14.self_attn.rotary_emb.inv_freq', 'model.layers.21.self_attn.rotary_emb.inv_freq', 'model.layers.27.self_attn.rotary_emb.inv_freq', 'model.layers.8.self_attn.rotary_emb.inv_freq', 'model.layers.11.self_attn.rotary_emb.inv_freq', 'model.layers.29.self_attn.rotary_emb.inv_freq', 'model.layers.28.self_attn.rotary_emb.inv_freq', 'model.layers.20.self_attn.rotary_emb.inv_freq', 'model.layers.31.self_attn.rotary_emb.inv_freq', 'model.layers.26.self_attn.rotary_emb.inv_freq', 'model.layers.13.self_attn.rotary_emb.inv_freq', 'model.layers.3.self_attn.rotary_emb.inv_freq', 'model.layers.22.self_attn.rotary_emb.inv_freq', 'model.layers.9.self_attn.rotary_emb.inv_freq', 'model.layers.5.self_attn.rotary_emb.inv_freq', 'model.layers.19.self_attn.rotary_emb.inv_freq', 'model.layers.16.self_attn.rotary_emb.inv_freq', 'model.layers.0.self_attn.rotary_emb.inv_freq']\n",
|
310 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
311 |
+
]
|
312 |
+
}
|
313 |
+
],
|
314 |
+
"source": [
|
315 |
+
"PEFT_MODEL = \"shanjay/mgc-ds\"\n",
|
316 |
+
"\n",
|
317 |
+
"config = PeftConfig.from_pretrained(PEFT_MODEL)\n",
|
318 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
319 |
+
" config.base_model_name_or_path,\n",
|
320 |
+
" return_dict=True,\n",
|
321 |
+
" quantization_config=bnb_config,\n",
|
322 |
+
" device_map=\"auto\",\n",
|
323 |
+
" trust_remote_code=True,\n",
|
324 |
+
")\n",
|
325 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
326 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
327 |
+
"\n",
|
328 |
+
"model = PeftModel.from_pretrained(model, PEFT_MODEL)"
|
329 |
+
]
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"cell_type": "code",
|
333 |
+
"execution_count": 26,
|
334 |
+
"id": "7c3e35e0-f77c-4d63-8e2b-e72027341e31",
|
335 |
+
"metadata": {},
|
336 |
+
"outputs": [],
|
337 |
+
"source": [
|
338 |
+
"generation_config = model.generation_config\n",
|
339 |
+
"generation_config.max_new_tokens = 400\n",
|
340 |
+
"generation_config.temperature = 0.7\n",
|
341 |
+
"generation_config.top_p = 0.7\n",
|
342 |
+
"generation_config.num_return_sequences = 1\n",
|
343 |
+
"generation_config.pad_token_id = tokenizer.eos_token_id\n",
|
344 |
+
"generation_config.eos_token_id = tokenizer.eos_token_id"
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "code",
|
349 |
+
"execution_count": 27,
|
350 |
+
"id": "aee4385b-d855-4225-9532-4e9002322579",
|
351 |
+
"metadata": {},
|
352 |
+
"outputs": [],
|
353 |
+
"source": [
|
354 |
+
"DEVICE = \"cuda:0\""
|
355 |
+
]
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"cell_type": "code",
|
359 |
+
"execution_count": 12,
|
360 |
+
"id": "7b14a1c6-ac62-4a9c-9df9-0db50facfd7e",
|
361 |
+
"metadata": {},
|
362 |
+
"outputs": [
|
363 |
+
{
|
364 |
+
"name": "stdout",
|
365 |
+
"output_type": "stream",
|
366 |
+
"text": [
|
367 |
+
"<instruction>: How can I create a dataframe?\n",
|
368 |
+
"<output>: import pandas as pd\n",
|
369 |
+
"\n",
|
370 |
+
"\n",
|
371 |
+
"\n",
|
372 |
+
"\n",
|
373 |
+
"\n",
|
374 |
+
"\n",
|
375 |
+
"\n",
|
376 |
+
"\n",
|
377 |
+
"\n",
|
378 |
+
"\n",
|
379 |
+
"\n",
|
380 |
+
"\n",
|
381 |
+
"\n",
|
382 |
+
"\n",
|
383 |
+
"\n",
|
384 |
+
"\n",
|
385 |
+
"\n",
|
386 |
+
"\n",
|
387 |
+
"\n",
|
388 |
+
"\n",
|
389 |
+
"\n",
|
390 |
+
"\n",
|
391 |
+
"\n",
|
392 |
+
"\n",
|
393 |
+
"\n",
|
394 |
+
"\n",
|
395 |
+
"\n",
|
396 |
+
"\n",
|
397 |
+
"\n",
|
398 |
+
"\n",
|
399 |
+
"\n",
|
400 |
+
"\n",
|
401 |
+
"\n",
|
402 |
+
"\n",
|
403 |
+
"\n",
|
404 |
+
"\n",
|
405 |
+
"\n",
|
406 |
+
"\n",
|
407 |
+
"\n",
|
408 |
+
"\n",
|
409 |
+
"\n",
|
410 |
+
"\n",
|
411 |
+
"\n",
|
412 |
+
"\n",
|
413 |
+
"\n",
|
414 |
+
"\n",
|
415 |
+
"\n",
|
416 |
+
"\n",
|
417 |
+
"\n",
|
418 |
+
"\n",
|
419 |
+
"\n",
|
420 |
+
"\n",
|
421 |
+
"\n",
|
422 |
+
"\n",
|
423 |
+
"\n",
|
424 |
+
"\n",
|
425 |
+
"\n",
|
426 |
+
"\n",
|
427 |
+
"\n",
|
428 |
+
"\n",
|
429 |
+
"\n",
|
430 |
+
"\n",
|
431 |
+
"\n",
|
432 |
+
"\n",
|
433 |
+
"\n",
|
434 |
+
"\n",
|
435 |
+
"\n",
|
436 |
+
"\n",
|
437 |
+
"\n",
|
438 |
+
"\n",
|
439 |
+
"\n",
|
440 |
+
"\n",
|
441 |
+
"\n",
|
442 |
+
"\n",
|
443 |
+
"\n",
|
444 |
+
"\n",
|
445 |
+
"\n",
|
446 |
+
"\n",
|
447 |
+
"\n",
|
448 |
+
"\n",
|
449 |
+
"\n",
|
450 |
+
"\n",
|
451 |
+
"\n",
|
452 |
+
"\n",
|
453 |
+
"\n",
|
454 |
+
"\n",
|
455 |
+
"\n",
|
456 |
+
"\n",
|
457 |
+
"\n",
|
458 |
+
"\n",
|
459 |
+
"\n",
|
460 |
+
"\n",
|
461 |
+
"\n",
|
462 |
+
"\n",
|
463 |
+
"\n",
|
464 |
+
"\n",
|
465 |
+
"\n",
|
466 |
+
"\n",
|
467 |
+
"\n",
|
468 |
+
"\n",
|
469 |
+
"\n",
|
470 |
+
"\n",
|
471 |
+
"\n",
|
472 |
+
"\n",
|
473 |
+
"\n",
|
474 |
+
"\n",
|
475 |
+
"\n",
|
476 |
+
"\n",
|
477 |
+
"\n",
|
478 |
+
"\n",
|
479 |
+
"\n",
|
480 |
+
"\n",
|
481 |
+
"\n",
|
482 |
+
"\n",
|
483 |
+
"\n",
|
484 |
+
"\n",
|
485 |
+
"\n",
|
486 |
+
"\n",
|
487 |
+
"\n",
|
488 |
+
"\n",
|
489 |
+
"\n",
|
490 |
+
"\n",
|
491 |
+
"\n",
|
492 |
+
"\n",
|
493 |
+
"\n",
|
494 |
+
"\n",
|
495 |
+
"\n",
|
496 |
+
"\n",
|
497 |
+
"\n",
|
498 |
+
"\n",
|
499 |
+
"\n",
|
500 |
+
"\n",
|
501 |
+
"\n",
|
502 |
+
"\n",
|
503 |
+
"\n",
|
504 |
+
"\n",
|
505 |
+
"\n",
|
506 |
+
"\n",
|
507 |
+
"\n",
|
508 |
+
"\n",
|
509 |
+
"\n",
|
510 |
+
"\n",
|
511 |
+
"\n",
|
512 |
+
"\n",
|
513 |
+
"\n",
|
514 |
+
"\n",
|
515 |
+
"\n",
|
516 |
+
"\n",
|
517 |
+
"\n",
|
518 |
+
"\n",
|
519 |
+
"\n",
|
520 |
+
"\n",
|
521 |
+
"\n",
|
522 |
+
"\n",
|
523 |
+
"\n",
|
524 |
+
"\n",
|
525 |
+
"\n",
|
526 |
+
"\n",
|
527 |
+
"\n",
|
528 |
+
"\n",
|
529 |
+
"\n",
|
530 |
+
"\n",
|
531 |
+
"\n",
|
532 |
+
"\n",
|
533 |
+
"\n",
|
534 |
+
"\n",
|
535 |
+
"\n",
|
536 |
+
"\n",
|
537 |
+
"\n",
|
538 |
+
"\n",
|
539 |
+
"\n",
|
540 |
+
"\n",
|
541 |
+
"\n",
|
542 |
+
"\n",
|
543 |
+
"\n",
|
544 |
+
"\n",
|
545 |
+
"\n",
|
546 |
+
"\n",
|
547 |
+
"\n",
|
548 |
+
"\n",
|
549 |
+
"\n",
|
550 |
+
"\n",
|
551 |
+
"\n",
|
552 |
+
"\n",
|
553 |
+
"\n",
|
554 |
+
"\n",
|
555 |
+
"\n",
|
556 |
+
"\n",
|
557 |
+
"\n",
|
558 |
+
"\n",
|
559 |
+
"\n",
|
560 |
+
"\n",
|
561 |
+
"\n",
|
562 |
+
"\n",
|
563 |
+
"CPU times: user 26.5 s, sys: 177 ms, total: 26.7 s\n",
|
564 |
+
"Wall time: 26.7 s\n"
|
565 |
+
]
|
566 |
+
}
|
567 |
+
],
|
568 |
+
"source": [
|
569 |
+
"%%time\n",
|
570 |
+
"prompt = f\"\"\"\n",
|
571 |
+
"<instruction>: How can I create a dataframe?\n",
|
572 |
+
"<output>:\n",
|
573 |
+
"\"\"\".strip()\n",
|
574 |
+
"\n",
|
575 |
+
"encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
576 |
+
"with torch.inference_mode():\n",
|
577 |
+
" outputs = model.generate(\n",
|
578 |
+
" input_ids=encoding.input_ids,\n",
|
579 |
+
" attention_mask=encoding.attention_mask,\n",
|
580 |
+
" generation_config=generation_config,\n",
|
581 |
+
" )\n",
|
582 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
583 |
+
]
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"cell_type": "code",
|
587 |
+
"execution_count": 28,
|
588 |
+
"id": "93c95988-c563-4871-974d-004bf73fbce8",
|
589 |
+
"metadata": {},
|
590 |
+
"outputs": [],
|
591 |
+
"source": [
|
592 |
+
"def generate_response(question: str) -> str:\n",
|
593 |
+
" prompt = f\"\"\"\n",
|
594 |
+
"<instruction>: {question}\n",
|
595 |
+
"<output>:\n",
|
596 |
+
"\"\"\".strip()\n",
|
597 |
+
" encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
598 |
+
" with torch.inference_mode():\n",
|
599 |
+
" outputs = model.generate(\n",
|
600 |
+
" input_ids=encoding.input_ids,\n",
|
601 |
+
" attention_mask=encoding.attention_mask,\n",
|
602 |
+
" generation_config=generation_config,\n",
|
603 |
+
" )\n",
|
604 |
+
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
605 |
+
"\n",
|
606 |
+
" assistant_start = \"<output>:\"\n",
|
607 |
+
" response_start = response.find(assistant_start)\n",
|
608 |
+
" return response[response_start + len(assistant_start) :].strip()"
|
609 |
+
]
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"cell_type": "code",
|
613 |
+
"execution_count": 29,
|
614 |
+
"id": "8a9a9b87-193b-4bed-8ef1-57944d931958",
|
615 |
+
"metadata": {},
|
616 |
+
"outputs": [
|
617 |
+
{
|
618 |
+
"name": "stdout",
|
619 |
+
"output_type": "stream",
|
620 |
+
"text": [
|
621 |
+
"import pandas as pd\n"
|
622 |
+
]
|
623 |
+
}
|
624 |
+
],
|
625 |
+
"source": [
|
626 |
+
"prompt = \"How can I create a dataframe?\"\n",
|
627 |
+
"print(generate_response(prompt))"
|
628 |
+
]
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"cell_type": "code",
|
632 |
+
"execution_count": 30,
|
633 |
+
"id": "4658f305-b7c6-432c-ac0c-f62bd79e9ad5",
|
634 |
+
"metadata": {},
|
635 |
+
"outputs": [
|
636 |
+
{
|
637 |
+
"name": "stdout",
|
638 |
+
"output_type": "stream",
|
639 |
+
"text": [
|
640 |
+
"import pandas as pd\n",
|
641 |
+
"\n",
|
642 |
+
"\n",
|
643 |
+
"\n",
|
644 |
+
"\n",
|
645 |
+
"\n",
|
646 |
+
"df1 = pd.DataFrame({'A': ['A', 'B', 'C', 'D'],\n",
|
647 |
+
" 'B': [1, 2, 3, 4]})\n",
|
648 |
+
"df2 = pd.DataFrame({'A': ['A', 'B', 'C', 'E'],\n",
|
649 |
+
" 'B': [1, 2, 3, 5]})\n",
|
650 |
+
"# merge df1 and df2 on column 'A'\n",
|
651 |
+
"# SOLUTION START\n",
|
652 |
+
"\n",
|
653 |
+
"<output>: import pandas as pd\n",
|
654 |
+
"\n",
|
655 |
+
"\n",
|
656 |
+
"\n",
|
657 |
+
"\n",
|
658 |
+
"\n",
|
659 |
+
"df1 = pd.DataFrame({'A': ['A', 'B', 'C', 'D'],\n",
|
660 |
+
" 'B': [1, 2, 3, 4]})\n",
|
661 |
+
"df2 = pd.DataFrame({'A': ['A', 'B', 'C', 'E'],\n",
|
662 |
+
" 'B': [1, 2, 3, 5]})\n",
|
663 |
+
"# merge df1 and df2 on column 'A'\n",
|
664 |
+
"result = pd.merge(df1, df2, on='A')\n",
|
665 |
+
"print(result)\n"
|
666 |
+
]
|
667 |
+
}
|
668 |
+
],
|
669 |
+
"source": [
|
670 |
+
"prompt = \"How to merge two dataframes?\"\n",
|
671 |
+
"print(generate_response(prompt))"
|
672 |
+
]
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"cell_type": "code",
|
676 |
+
"execution_count": 16,
|
677 |
+
"id": "0e9ed231-4a62-4331-94df-f3bcd601f138",
|
678 |
+
"metadata": {},
|
679 |
+
"outputs": [
|
680 |
+
{
|
681 |
+
"name": "stdout",
|
682 |
+
"output_type": "stream",
|
683 |
+
"text": [
|
684 |
+
"import pandas as pd\n",
|
685 |
+
"\n",
|
686 |
+
"\n",
|
687 |
+
"name = ['joy', 'shan']\n",
|
688 |
+
"roll_no = [1, 2]\n",
|
689 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
690 |
+
"print(df)\n"
|
691 |
+
]
|
692 |
+
}
|
693 |
+
],
|
694 |
+
"source": [
|
695 |
+
"prompt = \"given two arrays name=['joy','shan'], roll_no=[1,2]. put these array in a dataframe ?\"\n",
|
696 |
+
"print(generate_response(prompt))"
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"cell_type": "code",
|
701 |
+
"execution_count": 31,
|
702 |
+
"id": "381ba5c0-276d-411e-a8d5-9f010528433d",
|
703 |
+
"metadata": {},
|
704 |
+
"outputs": [
|
705 |
+
{
|
706 |
+
"name": "stdout",
|
707 |
+
"output_type": "stream",
|
708 |
+
"text": [
|
709 |
+
"import matplotlib.pyplot as plt\n",
|
710 |
+
"\n",
|
711 |
+
"x = [1, 2, 3, 4, 5]\n",
|
712 |
+
"y = [1, 2, 3, 4, 5]\n",
|
713 |
+
"\n",
|
714 |
+
"# plot all types of plots in matplotlib\n",
|
715 |
+
"# SOLUTION START\n",
|
716 |
+
"\n",
|
717 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
718 |
+
"\n",
|
719 |
+
"x = [1, 2, 3, 4, 5]\n",
|
720 |
+
"y = [1, 2, 3, 4, 5]\n",
|
721 |
+
"\n",
|
722 |
+
"# plot all types of plots in matplotlib\n",
|
723 |
+
"plt.plot(x, y, label=\"plot\")\n",
|
724 |
+
"plt.scatter(x, y, label=\"scatter\")\n",
|
725 |
+
"plt.bar(x, y, label=\"bar\")\n",
|
726 |
+
"plt.hist(x, y, label=\"hist\")\n",
|
727 |
+
"plt.boxplot(x, y, label=\"boxplot\")\n",
|
728 |
+
"plt.show()\n",
|
729 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
730 |
+
"\n",
|
731 |
+
"x = [1, 2, 3, 4, 5]\n",
|
732 |
+
"y = [1, 2, 3, 4, 5]\n",
|
733 |
+
"\n",
|
734 |
+
"# plot all types of plots in matplotlib\n",
|
735 |
+
"plt.plot(x, y, label=\"plot\")\n",
|
736 |
+
"plt.scatter(x, y, label=\"scatter\")\n",
|
737 |
+
"plt.bar(x, y, label=\"bar\")\n",
|
738 |
+
"plt.hist(x, y, label=\"hist\")\n",
|
739 |
+
"plt.boxplot(x, y, label=\"boxplot\")\n",
|
740 |
+
"plt.show()\n",
|
741 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
742 |
+
"\n",
|
743 |
+
"x = [1, 2, 3, 4, 5]\n"
|
744 |
+
]
|
745 |
+
}
|
746 |
+
],
|
747 |
+
"source": [
|
748 |
+
"prompt = \"can you plot all types of plots in matplotlib?\"\n",
|
749 |
+
"print(generate_response(prompt))"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"cell_type": "code",
|
754 |
+
"execution_count": 32,
|
755 |
+
"id": "6864c3c7-b721-48ca-8943-dcff9838f7d2",
|
756 |
+
"metadata": {},
|
757 |
+
"outputs": [
|
758 |
+
{
|
759 |
+
"name": "stdout",
|
760 |
+
"output_type": "stream",
|
761 |
+
"text": [
|
762 |
+
"import pandas as pd\n",
|
763 |
+
"\n",
|
764 |
+
"\n",
|
765 |
+
"df = pd.DataFrame({'ID': ['01', '01', '01', '02', '02'],\n",
|
766 |
+
" 'TIME': ['2018-07-11 11:12:20', '2018-07-12 12:00:23', '2018-07-13 12:00:00', '2019-09-11 11:00:00', '2019-09-12 12:00:00']})\n",
|
767 |
+
"def g(df):\n",
|
768 |
+
" df['TIME'] = pd.to_datetime(df['TIME'])\n",
|
769 |
+
" df['RANK'] = df.groupby('ID')['TIME'].rank(ascending=True)\n",
|
770 |
+
" return df\n",
|
771 |
+
"\n",
|
772 |
+
"df = g(df.copy())\n",
|
773 |
+
"print(df)\n",
|
774 |
+
"<output>: import pandas as pd\n",
|
775 |
+
"\n",
|
776 |
+
"\n",
|
777 |
+
"df = pd.DataFrame({'ID': ['01', '01', '01', '02', '02'],\n",
|
778 |
+
" 'TIME': ['2018-07-11 11:12:20', '2018-07-12 12:00:23', '2018-07-13 12:00:00', '2019-09-11 11:00:00', '2019-09-12 12:00:00']})\n",
|
779 |
+
"def g(df):\n",
|
780 |
+
" df['TIME'] = pd.to_datetime(df['TIME'])\n"
|
781 |
+
]
|
782 |
+
}
|
783 |
+
],
|
784 |
+
"source": [
|
785 |
+
"prompt = \"\"\"Problem:\n",
|
786 |
+
"i got an issue over ranking of date times. Lets say i have following table.\n",
|
787 |
+
"ID TIME\n",
|
788 |
+
"01 2018-07-11 11:12:20\n",
|
789 |
+
"01 2018-07-12 12:00:23\n",
|
790 |
+
"01 2018-07-13 12:00:00\n",
|
791 |
+
"02 2019-09-11 11:00:00\n",
|
792 |
+
"02 2019-09-12 12:00:00\n",
|
793 |
+
"\n",
|
794 |
+
"\n",
|
795 |
+
"and i want to add another column to rank the table by time for each id and group. I used \n",
|
796 |
+
"df['RANK'] = data.groupby('ID')['TIME'].rank(ascending=True)\n",
|
797 |
+
"\n",
|
798 |
+
"\n",
|
799 |
+
"but get an error:\n",
|
800 |
+
"'NoneType' object is not callable\n",
|
801 |
+
"\n",
|
802 |
+
"\n",
|
803 |
+
"If i replace datetime to numbers, it works.... any solutions?\n",
|
804 |
+
"\"\"\"\n",
|
805 |
+
"print(generate_response(prompt))"
|
806 |
+
]
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"cell_type": "code",
|
810 |
+
"execution_count": 33,
|
811 |
+
"id": "7fa02929-5c65-4aa6-81ce-9c51879e7535",
|
812 |
+
"metadata": {},
|
813 |
+
"outputs": [
|
814 |
+
{
|
815 |
+
"name": "stdout",
|
816 |
+
"output_type": "stream",
|
817 |
+
"text": [
|
818 |
+
"import pandas as pd\n",
|
819 |
+
"\n",
|
820 |
+
"\n",
|
821 |
+
"index = range(14)\n",
|
822 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
823 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
824 |
+
"def g(df):\n",
|
825 |
+
" df['A'] = df['A'].replace(0, np.nan)\n",
|
826 |
+
" df['A'] = df['A'].fillna(method='ffill')\n",
|
827 |
+
" df['A'] = df['A'].fillna(method='bfill')\n",
|
828 |
+
" return df\n",
|
829 |
+
"\n",
|
830 |
+
"df = g(df.copy())\n",
|
831 |
+
"result = df\n",
|
832 |
+
"print(result)\n",
|
833 |
+
"<output>: import pandas as pd\n",
|
834 |
+
"import numpy as np\n",
|
835 |
+
"\n",
|
836 |
+
"\n",
|
837 |
+
"index = range(14)\n",
|
838 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
839 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
840 |
+
"def g(df):\n",
|
841 |
+
" df['A'] = df['A'].replace(0, np.nan)\n",
|
842 |
+
" df['A'] = df['A'].fillna(method='ffill')\n",
|
843 |
+
" df['A'] = df['A'].fillna(method='bfill')\n",
|
844 |
+
" return df\n",
|
845 |
+
"\n",
|
846 |
+
"df = g(df.copy())\n",
|
847 |
+
"result = df\n",
|
848 |
+
"print(result)\n",
|
849 |
+
"<output>: import pandas as pd\n",
|
850 |
+
"import numpy as np\n",
|
851 |
+
"\n",
|
852 |
+
"\n",
|
853 |
+
"index = range(14)\n",
|
854 |
+
"data = [1, 0, 0, 2, 0, 4\n"
|
855 |
+
]
|
856 |
+
}
|
857 |
+
],
|
858 |
+
"source": [
|
859 |
+
"prompt = \"\"\"Problem:\n",
|
860 |
+
"I have the following dataframe:\n",
|
861 |
+
"index = range(14)\n",
|
862 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
863 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
864 |
+
"\n",
|
865 |
+
"\n",
|
866 |
+
"How can I fill the zeros with the maximun between previous and posterior non-zero value using pandas? Is there a fillna that is not just for \"NaN\"?. \n",
|
867 |
+
"The output should look like:\n",
|
868 |
+
" A\n",
|
869 |
+
"0 1\n",
|
870 |
+
"1 2\n",
|
871 |
+
"2 2\n",
|
872 |
+
"3 2\n",
|
873 |
+
"4 4\n",
|
874 |
+
"5 4\n",
|
875 |
+
"6 6\n",
|
876 |
+
"7 8\n",
|
877 |
+
"8 8\n",
|
878 |
+
"9 8\n",
|
879 |
+
"10 8\n",
|
880 |
+
"11 8\n",
|
881 |
+
"12 2\n",
|
882 |
+
"13 1\n",
|
883 |
+
"\"\"\"\n",
|
884 |
+
"\n",
|
885 |
+
"print(generate_response(prompt))"
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "code",
|
890 |
+
"execution_count": 34,
|
891 |
+
"id": "255cc021-5f5e-46af-a75e-a435b9629cdf",
|
892 |
+
"metadata": {},
|
893 |
+
"outputs": [
|
894 |
+
{
|
895 |
+
"name": "stdout",
|
896 |
+
"output_type": "stream",
|
897 |
+
"text": [
|
898 |
+
"Problem:\n",
|
899 |
+
"My sample df has four columns with NaN values. The goal is to concatenate all the keywords rows while excluding the NaN values.\n",
|
900 |
+
"import pandas as pd\n",
|
901 |
+
"import numpy as np\n",
|
902 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
903 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
904 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
905 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
906 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
907 |
+
"\n",
|
908 |
+
"\n",
|
909 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3\n",
|
910 |
+
"0 Hu Tao a d NaN f\n",
|
911 |
+
"1 Zhongli NaN e NaN NaN\n",
|
912 |
+
"2 Xingqiu c NaN b g\n",
|
913 |
+
"\n",
|
914 |
+
"\n",
|
915 |
+
"Want to accomplish the following:\n",
|
916 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3 keywords_all\n",
|
917 |
+
"0 Hu Tao a d NaN f a-d-f\n",
|
918 |
+
"1 Zhongli NaN e NaN NaN e\n",
|
919 |
+
"2 Xingqiu c NaN b g c-b-g\n",
|
920 |
+
"\n",
|
921 |
+
"\n",
|
922 |
+
"Pseudo code:\n",
|
923 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
924 |
+
"df[\"keywords_all\"] = df[\"keywords_all\"].apply(lambda cols: \"-\".join(cols), axis=1)\n",
|
925 |
+
"\n",
|
926 |
+
"\n",
|
927 |
+
"I know I can use \"-\".join() to get the exact result, but I am unsure how to pass the column names into the function.\n"
|
928 |
+
]
|
929 |
+
}
|
930 |
+
],
|
931 |
+
"source": [
|
932 |
+
"print(data[5]['question'])"
|
933 |
+
]
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"cell_type": "code",
|
937 |
+
"execution_count": 35,
|
938 |
+
"id": "1c5841e9-4331-4185-a7ad-7dd00d4e13b1",
|
939 |
+
"metadata": {},
|
940 |
+
"outputs": [
|
941 |
+
{
|
942 |
+
"name": "stdout",
|
943 |
+
"output_type": "stream",
|
944 |
+
"text": [
|
945 |
+
"import pandas as pd\n",
|
946 |
+
"import numpy as np\n",
|
947 |
+
"\n",
|
948 |
+
"\n",
|
949 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
950 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
951 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
952 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
953 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
954 |
+
"import numpy as np\n",
|
955 |
+
"def g(df):\n",
|
956 |
+
" df[\"keywords_all\"] = df.filter(like='keyword').apply(lambda x: '-'.join(x.dropna()), axis=1)\n",
|
957 |
+
" return df\n",
|
958 |
+
"\n",
|
959 |
+
"df = g(df.copy())\n",
|
960 |
+
"result = df\n",
|
961 |
+
"print(result)\n"
|
962 |
+
]
|
963 |
+
}
|
964 |
+
],
|
965 |
+
"source": [
|
966 |
+
"print(data[5]['answer'])"
|
967 |
+
]
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"cell_type": "code",
|
971 |
+
"execution_count": 36,
|
972 |
+
"id": "090e98c3-78db-4e33-af4b-01c6e1fc23d0",
|
973 |
+
"metadata": {},
|
974 |
+
"outputs": [
|
975 |
+
{
|
976 |
+
"name": "stdout",
|
977 |
+
"output_type": "stream",
|
978 |
+
"text": [
|
979 |
+
"import pandas as pd\n",
|
980 |
+
"import numpy as np\n",
|
981 |
+
"\n",
|
982 |
+
"\n",
|
983 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
984 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
985 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
986 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
987 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
988 |
+
"\n",
|
989 |
+
"\n",
|
990 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
991 |
+
"def f(cols):\n",
|
992 |
+
" return \"-\".join(cols)\n",
|
993 |
+
"\n",
|
994 |
+
"\n",
|
995 |
+
"df[\"keywords_all\"] = df.apply(lambda row: f(row[cols]), axis=1)\n",
|
996 |
+
"\n",
|
997 |
+
"\n",
|
998 |
+
"print(df)\n",
|
999 |
+
"<output>: import pandas as pd\n",
|
1000 |
+
"import numpy as np\n",
|
1001 |
+
"\n",
|
1002 |
+
"\n",
|
1003 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
1004 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
1005 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
1006 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
1007 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
1008 |
+
"\n",
|
1009 |
+
"\n",
|
1010 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
1011 |
+
"def f(cols):\n",
|
1012 |
+
" return \"-\".join(cols)\n",
|
1013 |
+
"\n",
|
1014 |
+
"\n",
|
1015 |
+
"df[\"keywords_all\"] = df.apply(lambda\n"
|
1016 |
+
]
|
1017 |
+
}
|
1018 |
+
],
|
1019 |
+
"source": [
|
1020 |
+
"prompt = data[5]['question']\n",
|
1021 |
+
"print(generate_response(prompt))"
|
1022 |
+
]
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"cell_type": "code",
|
1026 |
+
"execution_count": 37,
|
1027 |
+
"id": "29609669-1ac7-4f6a-b0e3-64a3bf7a6545",
|
1028 |
+
"metadata": {},
|
1029 |
+
"outputs": [
|
1030 |
+
{
|
1031 |
+
"name": "stdout",
|
1032 |
+
"output_type": "stream",
|
1033 |
+
"text": [
|
1034 |
+
"import pandas as pd\n",
|
1035 |
+
"\n",
|
1036 |
+
"\n",
|
1037 |
+
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1038 |
+
" 'B': [None, 2, 3, 4, 5],\n",
|
1039 |
+
" 'C': [1, 2, 3, 4, 5]})\n",
|
1040 |
+
"df = df.dropna()\n",
|
1041 |
+
"print(df)\n",
|
1042 |
+
"<output>: import pandas as pd\n",
|
1043 |
+
"\n",
|
1044 |
+
"\n",
|
1045 |
+
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1046 |
+
" 'B': [None, 2, 3, 4, 5],\n",
|
1047 |
+
" 'C': [1, 2, 3, 4, 5]})\n",
|
1048 |
+
"df = df.dropna()\n",
|
1049 |
+
"print(df)\n",
|
1050 |
+
"<output>: import pandas as pd\n",
|
1051 |
+
"\n",
|
1052 |
+
"\n",
|
1053 |
+
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1054 |
+
" 'B': [None, 2, 3, 4, 5],\n",
|
1055 |
+
" 'C': [1, 2, 3, 4, 5]})\n",
|
1056 |
+
"df = df.dropna()\n",
|
1057 |
+
"print(df)\n",
|
1058 |
+
"<output>: import pandas as pd\n",
|
1059 |
+
"\n",
|
1060 |
+
"\n",
|
1061 |
+
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1062 |
+
" 'B': [None, 2, 3, 4, 5],\n",
|
1063 |
+
" 'C': [1, 2, 3, 4, 5]})\n",
|
1064 |
+
"df = df.dropna()\n",
|
1065 |
+
"print(df)\n",
|
1066 |
+
"<output>: import pandas as pd\n",
|
1067 |
+
"\n",
|
1068 |
+
"\n",
|
1069 |
+
"df = pd.DataFrame({'A': [1, 2, None,\n"
|
1070 |
+
]
|
1071 |
+
}
|
1072 |
+
],
|
1073 |
+
"source": [
|
1074 |
+
"prompt = \"How to remove null valued rows?\"\n",
|
1075 |
+
"print(generate_response(prompt))"
|
1076 |
+
]
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"cell_type": "code",
|
1080 |
+
"execution_count": 39,
|
1081 |
+
"id": "5ca085f6-30fc-4e50-a436-673f3baa75af",
|
1082 |
+
"metadata": {},
|
1083 |
+
"outputs": [
|
1084 |
+
{
|
1085 |
+
"name": "stdout",
|
1086 |
+
"output_type": "stream",
|
1087 |
+
"text": [
|
1088 |
+
"import numpy as np\n",
|
1089 |
+
"import pandas as pd\n",
|
1090 |
+
"import matplotlib.pyplot as plt\n",
|
1091 |
+
"import seaborn as sns\n",
|
1092 |
+
"import sklearn\n",
|
1093 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
1094 |
+
"from sklearn.model_selection import train_test_split\n",
|
1095 |
+
"\n",
|
1096 |
+
"\n",
|
1097 |
+
"X, y = load_data()\n",
|
1098 |
+
"\n",
|
1099 |
+
"# Split the data into training and test sets\n",
|
1100 |
+
"# Split the data into training and test sets\n",
|
1101 |
+
"# Split the data into training and test sets\n",
|
1102 |
+
"# Train a Logistic Regression model on the training data\n",
|
1103 |
+
"# Print the accuracy of the model on the test data\n",
|
1104 |
+
"# SOLUTION START\n",
|
1105 |
+
"\n",
|
1106 |
+
"<output>: import numpy as np\n",
|
1107 |
+
"import pandas as pd\n",
|
1108 |
+
"import matplotlib.pyplot as plt\n",
|
1109 |
+
"import seaborn as sns\n",
|
1110 |
+
"import sklearn\n",
|
1111 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
1112 |
+
"from sklearn.model_selection import train_test_split\n",
|
1113 |
+
"\n",
|
1114 |
+
"\n",
|
1115 |
+
"X, y = load_data()\n",
|
1116 |
+
"\n",
|
1117 |
+
"# Split the data into training and test sets\n",
|
1118 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
1119 |
+
"# Train a Logistic Regression model on the training data\n",
|
1120 |
+
"model = LogisticRegression()\n",
|
1121 |
+
"model.fit(X_train, y_train)\n",
|
1122 |
+
"# Print the accuracy of the model on the test data\n",
|
1123 |
+
"print(model.score(X_test, y_test))\n",
|
1124 |
+
"<output>: import numpy as np\n",
|
1125 |
+
"import pandas as pd\n",
|
1126 |
+
"import matplotlib.pyplot as plt\n",
|
1127 |
+
"import seaborn as sns\n",
|
1128 |
+
"import sklearn\n",
|
1129 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
1130 |
+
"from sklearn.model_selection import train_test_split\n"
|
1131 |
+
]
|
1132 |
+
}
|
1133 |
+
],
|
1134 |
+
"source": [
|
1135 |
+
"prompt = \"How to train a Logistic Regression model?\"\n",
|
1136 |
+
"print(generate_response(prompt))"
|
1137 |
+
]
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"cell_type": "code",
|
1141 |
+
"execution_count": null,
|
1142 |
+
"id": "146527ff-5d37-42c7-b06b-45c1aa224d17",
|
1143 |
+
"metadata": {},
|
1144 |
+
"outputs": [],
|
1145 |
+
"source": []
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"cell_type": "code",
|
1149 |
+
"execution_count": null,
|
1150 |
+
"id": "84f671f3-7bd6-4a7c-81e9-758052b424cf",
|
1151 |
+
"metadata": {},
|
1152 |
+
"outputs": [],
|
1153 |
+
"source": []
|
1154 |
+
}
|
1155 |
+
],
|
1156 |
+
"metadata": {
|
1157 |
+
"kernelspec": {
|
1158 |
+
"display_name": "Python 3 (ipykernel)",
|
1159 |
+
"language": "python",
|
1160 |
+
"name": "python3"
|
1161 |
+
},
|
1162 |
+
"language_info": {
|
1163 |
+
"codemirror_mode": {
|
1164 |
+
"name": "ipython",
|
1165 |
+
"version": 3
|
1166 |
+
},
|
1167 |
+
"file_extension": ".py",
|
1168 |
+
"mimetype": "text/x-python",
|
1169 |
+
"name": "python",
|
1170 |
+
"nbconvert_exporter": "python",
|
1171 |
+
"pygments_lexer": "ipython3",
|
1172 |
+
"version": "3.10.13"
|
1173 |
+
}
|
1174 |
+
},
|
1175 |
+
"nbformat": 4,
|
1176 |
+
"nbformat_minor": 5
|
1177 |
+
}
|
Test-mgc-f.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Test.ipynb
ADDED
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 11,
|
6 |
+
"id": "addd199c-097c-419d-a0f2-c3d73efb8d5d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import json\n",
|
11 |
+
"import os\n",
|
12 |
+
"from pprint import pprint\n",
|
13 |
+
"\n",
|
14 |
+
"import bitsandbytes as bnb\n",
|
15 |
+
"import pandas as pd\n",
|
16 |
+
"import torch\n",
|
17 |
+
"import torch.nn as nn\n",
|
18 |
+
"\n",
|
19 |
+
"import transformers\n",
|
20 |
+
"from datasets import load_dataset\n",
|
21 |
+
"from huggingface_hub import notebook_login\n",
|
22 |
+
"from peft import (\n",
|
23 |
+
" LoraConfig,\n",
|
24 |
+
" PeftConfig,\n",
|
25 |
+
" PeftModel,\n",
|
26 |
+
" get_peft_model,\n",
|
27 |
+
" prepare_model_for_kbit_training,\n",
|
28 |
+
")\n",
|
29 |
+
"from transformers import (\n",
|
30 |
+
" AutoConfig,\n",
|
31 |
+
" AutoModelForCausalLM,\n",
|
32 |
+
" AutoTokenizer,\n",
|
33 |
+
" BitsAndBytesConfig,\n",
|
34 |
+
")\n",
|
35 |
+
"import warnings\n",
|
36 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
37 |
+
"\n",
|
38 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 2,
|
44 |
+
"id": "acfb1578-a66f-44f0-8df9-1c6bcf7530ea",
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [
|
47 |
+
{
|
48 |
+
"data": {
|
49 |
+
"application/vnd.jupyter.widget-view+json": {
|
50 |
+
"model_id": "b92bb6f7a2784be8bf5cab2ee87292ff",
|
51 |
+
"version_major": 2,
|
52 |
+
"version_minor": 0
|
53 |
+
},
|
54 |
+
"text/plain": [
|
55 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
"metadata": {},
|
59 |
+
"output_type": "display_data"
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"source": [
|
63 |
+
"notebook_login()"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 3,
|
69 |
+
"id": "d2f13cac-1536-4da0-8ff7-0a0454fd0b4a",
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"with open(\"ds1000-test-cleaned.json\") as json_file:\n",
|
74 |
+
" data = json.load(json_file)"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 5,
|
80 |
+
"id": "6706e68b-d525-4392-ab2c-1dff356da52d",
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [
|
83 |
+
{
|
84 |
+
"name": "stdout",
|
85 |
+
"output_type": "stream",
|
86 |
+
"text": [
|
87 |
+
"{'answer': 'import pandas as pd\\n'\n",
|
88 |
+
" '\\n'\n",
|
89 |
+
" '\\n'\n",
|
90 |
+
" 'index = range(14)\\n'\n",
|
91 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
92 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
93 |
+
" 'def g(df):\\n'\n",
|
94 |
+
" \" l = df['A'].replace(to_replace=0, method='ffill')\\n\"\n",
|
95 |
+
" \" r = df['A'].replace(to_replace=0, method='bfill')\\n\"\n",
|
96 |
+
" ' for i in range(len(df)):\\n'\n",
|
97 |
+
" \" df['A'].iloc[i] = max(l[i], r[i])\\n\"\n",
|
98 |
+
" ' return df\\n'\n",
|
99 |
+
" '\\n'\n",
|
100 |
+
" 'df = g(df.copy())\\n'\n",
|
101 |
+
" 'result = df\\n'\n",
|
102 |
+
" 'print(result)',\n",
|
103 |
+
" 'question': 'Problem:\\n'\n",
|
104 |
+
" 'I have the following dataframe:\\n'\n",
|
105 |
+
" 'index = range(14)\\n'\n",
|
106 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
107 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
108 |
+
" '\\n'\n",
|
109 |
+
" '\\n'\n",
|
110 |
+
" 'How can I fill the zeros with the maximun between previous and '\n",
|
111 |
+
" 'posterior non-zero value using pandas? Is there a fillna that is '\n",
|
112 |
+
" 'not just for \"NaN\"?. \\n'\n",
|
113 |
+
" 'The output should look like:\\n'\n",
|
114 |
+
" ' A\\n'\n",
|
115 |
+
" '0 1\\n'\n",
|
116 |
+
" '1 2\\n'\n",
|
117 |
+
" '2 2\\n'\n",
|
118 |
+
" '3 2\\n'\n",
|
119 |
+
" '4 4\\n'\n",
|
120 |
+
" '5 4\\n'\n",
|
121 |
+
" '6 6\\n'\n",
|
122 |
+
" '7 8\\n'\n",
|
123 |
+
" '8 8\\n'\n",
|
124 |
+
" '9 8\\n'\n",
|
125 |
+
" '10 8\\n'\n",
|
126 |
+
" '11 8\\n'\n",
|
127 |
+
" '12 2\\n'\n",
|
128 |
+
" '13 1'}\n"
|
129 |
+
]
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"source": [
|
133 |
+
"pprint(data[0])"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 6,
|
139 |
+
"id": "9cc4983a-9a3f-485f-983f-efe2f10ce516",
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [],
|
142 |
+
"source": [
|
143 |
+
"with open(\"ds1000-test-cleaned.json\", \"w\") as f:\n",
|
144 |
+
" json.dump(data, f)"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": 7,
|
150 |
+
"id": "f45c3674-4eed-4ca5-8343-2184ff1e4da1",
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [
|
153 |
+
{
|
154 |
+
"data": {
|
155 |
+
"text/html": [
|
156 |
+
"<div>\n",
|
157 |
+
"<style scoped>\n",
|
158 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
159 |
+
" vertical-align: middle;\n",
|
160 |
+
" }\n",
|
161 |
+
"\n",
|
162 |
+
" .dataframe tbody tr th {\n",
|
163 |
+
" vertical-align: top;\n",
|
164 |
+
" }\n",
|
165 |
+
"\n",
|
166 |
+
" .dataframe thead th {\n",
|
167 |
+
" text-align: right;\n",
|
168 |
+
" }\n",
|
169 |
+
"</style>\n",
|
170 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
171 |
+
" <thead>\n",
|
172 |
+
" <tr style=\"text-align: right;\">\n",
|
173 |
+
" <th></th>\n",
|
174 |
+
" <th>question</th>\n",
|
175 |
+
" <th>answer</th>\n",
|
176 |
+
" </tr>\n",
|
177 |
+
" </thead>\n",
|
178 |
+
" <tbody>\n",
|
179 |
+
" <tr>\n",
|
180 |
+
" <th>0</th>\n",
|
181 |
+
" <td>Problem:\\nI have the following dataframe:\\nind...</td>\n",
|
182 |
+
" <td>import pandas as pd\\n\\n\\nindex = range(14)\\nda...</td>\n",
|
183 |
+
" </tr>\n",
|
184 |
+
" <tr>\n",
|
185 |
+
" <th>1</th>\n",
|
186 |
+
" <td>Problem:\\ni got an issue over ranking of date ...</td>\n",
|
187 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I...</td>\n",
|
188 |
+
" </tr>\n",
|
189 |
+
" <tr>\n",
|
190 |
+
" <th>2</th>\n",
|
191 |
+
" <td>Problem:\\nI have a DataFrame like :\\n 0 ...</td>\n",
|
192 |
+
" <td>import pandas as pd\\nimport numpy as np\\n\\ndf ...</td>\n",
|
193 |
+
" </tr>\n",
|
194 |
+
" <tr>\n",
|
195 |
+
" <th>3</th>\n",
|
196 |
+
" <td>Problem:\\nI have this Pandas dataframe (df):\\n...</td>\n",
|
197 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A...</td>\n",
|
198 |
+
" </tr>\n",
|
199 |
+
" <tr>\n",
|
200 |
+
" <th>4</th>\n",
|
201 |
+
" <td>Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic...</td>\n",
|
202 |
+
" <td>import pandas as pd\\n\\ndf = pd.DataFrame.from_...</td>\n",
|
203 |
+
" </tr>\n",
|
204 |
+
" </tbody>\n",
|
205 |
+
"</table>\n",
|
206 |
+
"</div>"
|
207 |
+
],
|
208 |
+
"text/plain": [
|
209 |
+
" question \\\n",
|
210 |
+
"0 Problem:\\nI have the following dataframe:\\nind... \n",
|
211 |
+
"1 Problem:\\ni got an issue over ranking of date ... \n",
|
212 |
+
"2 Problem:\\nI have a DataFrame like :\\n 0 ... \n",
|
213 |
+
"3 Problem:\\nI have this Pandas dataframe (df):\\n... \n",
|
214 |
+
"4 Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic... \n",
|
215 |
+
"\n",
|
216 |
+
" answer \n",
|
217 |
+
"0 import pandas as pd\\n\\n\\nindex = range(14)\\nda... \n",
|
218 |
+
"1 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I... \n",
|
219 |
+
"2 import pandas as pd\\nimport numpy as np\\n\\ndf ... \n",
|
220 |
+
"3 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A... \n",
|
221 |
+
"4 import pandas as pd\\n\\ndf = pd.DataFrame.from_... "
|
222 |
+
]
|
223 |
+
},
|
224 |
+
"execution_count": 7,
|
225 |
+
"metadata": {},
|
226 |
+
"output_type": "execute_result"
|
227 |
+
}
|
228 |
+
],
|
229 |
+
"source": [
|
230 |
+
"pd.DataFrame(data).head()"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": 9,
|
236 |
+
"id": "6fbdd3ad-062f-4744-bb8e-1c19950adfd5",
|
237 |
+
"metadata": {},
|
238 |
+
"outputs": [],
|
239 |
+
"source": [
|
240 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
241 |
+
" load_in_4bit=True,\n",
|
242 |
+
" bnb_4bit_use_double_quant=True,\n",
|
243 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
244 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
245 |
+
")"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": 12,
|
251 |
+
"id": "2b5ae38c-b0d2-4b9a-acde-3370130ca6e7",
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [
|
254 |
+
{
|
255 |
+
"data": {
|
256 |
+
"application/vnd.jupyter.widget-view+json": {
|
257 |
+
"model_id": "3d6c5533e9ea48e295b7fdfd96da6d47",
|
258 |
+
"version_major": 2,
|
259 |
+
"version_minor": 0
|
260 |
+
},
|
261 |
+
"text/plain": [
|
262 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
"metadata": {},
|
266 |
+
"output_type": "display_data"
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"name": "stderr",
|
270 |
+
"output_type": "stream",
|
271 |
+
"text": [
|
272 |
+
"Some weights of LlamaForCausalLM were not initialized from the model checkpoint at deepseek-ai/deepseek-coder-6.7b-instruct and are newly initialized: ['model.layers.16.self_attn.rotary_emb.inv_freq', 'model.layers.11.self_attn.rotary_emb.inv_freq', 'model.layers.13.self_attn.rotary_emb.inv_freq', 'model.layers.27.self_attn.rotary_emb.inv_freq', 'model.layers.28.self_attn.rotary_emb.inv_freq', 'model.layers.10.self_attn.rotary_emb.inv_freq', 'model.layers.14.self_attn.rotary_emb.inv_freq', 'model.layers.24.self_attn.rotary_emb.inv_freq', 'model.layers.3.self_attn.rotary_emb.inv_freq', 'model.layers.9.self_attn.rotary_emb.inv_freq', 'model.layers.29.self_attn.rotary_emb.inv_freq', 'model.layers.6.self_attn.rotary_emb.inv_freq', 'model.layers.8.self_attn.rotary_emb.inv_freq', 'model.layers.22.self_attn.rotary_emb.inv_freq', 'model.layers.0.self_attn.rotary_emb.inv_freq', 'model.layers.25.self_attn.rotary_emb.inv_freq', 'model.layers.12.self_attn.rotary_emb.inv_freq', 'model.layers.26.self_attn.rotary_emb.inv_freq', 'model.layers.2.self_attn.rotary_emb.inv_freq', 'model.layers.31.self_attn.rotary_emb.inv_freq', 'model.layers.1.self_attn.rotary_emb.inv_freq', 'model.layers.4.self_attn.rotary_emb.inv_freq', 'model.layers.23.self_attn.rotary_emb.inv_freq', 'model.layers.15.self_attn.rotary_emb.inv_freq', 'model.layers.7.self_attn.rotary_emb.inv_freq', 'model.layers.21.self_attn.rotary_emb.inv_freq', 'model.layers.20.self_attn.rotary_emb.inv_freq', 'model.layers.19.self_attn.rotary_emb.inv_freq', 'model.layers.30.self_attn.rotary_emb.inv_freq', 'model.layers.18.self_attn.rotary_emb.inv_freq', 'model.layers.17.self_attn.rotary_emb.inv_freq', 'model.layers.5.self_attn.rotary_emb.inv_freq']\n",
|
273 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
274 |
+
]
|
275 |
+
}
|
276 |
+
],
|
277 |
+
"source": [
|
278 |
+
"PEFT_MODEL = \"shanjay/ds-dsc\"\n",
|
279 |
+
"\n",
|
280 |
+
"config = PeftConfig.from_pretrained(PEFT_MODEL)\n",
|
281 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
282 |
+
" config.base_model_name_or_path,\n",
|
283 |
+
" return_dict=True,\n",
|
284 |
+
" quantization_config=bnb_config,\n",
|
285 |
+
" device_map=\"auto\",\n",
|
286 |
+
" trust_remote_code=True,\n",
|
287 |
+
")\n",
|
288 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
289 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
290 |
+
"\n",
|
291 |
+
"model = PeftModel.from_pretrained(model, PEFT_MODEL)"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": 13,
|
297 |
+
"id": "7c3e35e0-f77c-4d63-8e2b-e72027341e31",
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [],
|
300 |
+
"source": [
|
301 |
+
"generation_config = model.generation_config\n",
|
302 |
+
"generation_config.max_new_tokens = 200\n",
|
303 |
+
"generation_config.temperature = 0.7\n",
|
304 |
+
"generation_config.top_p = 0.7\n",
|
305 |
+
"generation_config.num_return_sequences = 1\n",
|
306 |
+
"generation_config.pad_token_id = tokenizer.eos_token_id\n",
|
307 |
+
"generation_config.eos_token_id = tokenizer.eos_token_id"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "code",
|
312 |
+
"execution_count": 14,
|
313 |
+
"id": "aee4385b-d855-4225-9532-4e9002322579",
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [],
|
316 |
+
"source": [
|
317 |
+
"DEVICE = \"cuda:0\""
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": 15,
|
323 |
+
"id": "7b14a1c6-ac62-4a9c-9df9-0db50facfd7e",
|
324 |
+
"metadata": {},
|
325 |
+
"outputs": [
|
326 |
+
{
|
327 |
+
"name": "stdout",
|
328 |
+
"output_type": "stream",
|
329 |
+
"text": [
|
330 |
+
"<instruction>: How can I create a dataframe?\n",
|
331 |
+
"<output>:\n",
|
332 |
+
"import pandas as pd\n",
|
333 |
+
"import numpy as np\n",
|
334 |
+
"\n",
|
335 |
+
"df = pd.DataFrame(\n",
|
336 |
+
" {\n",
|
337 |
+
" \"A\": np.array([1, 2, 3]),\n",
|
338 |
+
" \"B\": np.array([4, 5, 6]),\n",
|
339 |
+
" \"C\": np.array([7, 8, 9]),\n",
|
340 |
+
" }\n",
|
341 |
+
")\n",
|
342 |
+
"</output>\n",
|
343 |
+
"BEGIN SOLUTION\n",
|
344 |
+
"<output>\n",
|
345 |
+
"[1]\n",
|
346 |
+
"<code>\n",
|
347 |
+
"[python]\n",
|
348 |
+
"# Your code here\n",
|
349 |
+
"</code>\n",
|
350 |
+
"</output>\n",
|
351 |
+
"END SOLUTION\n",
|
352 |
+
"<output>\n",
|
353 |
+
"[1]\n",
|
354 |
+
"<code>\n",
|
355 |
+
"[python]\n",
|
356 |
+
"print(df)\n",
|
357 |
+
"</code>\n",
|
358 |
+
"</output>\n",
|
359 |
+
"\n",
|
360 |
+
"<assistant>: df = pd.DataFrame(\n",
|
361 |
+
" {\n",
|
362 |
+
" \"A\": np.array([1, 2, 3]),\n",
|
363 |
+
"CPU times: user 27.4 s, sys: 372 ms, total: 27.8 s\n",
|
364 |
+
"Wall time: 27.9 s\n"
|
365 |
+
]
|
366 |
+
}
|
367 |
+
],
|
368 |
+
"source": [
|
369 |
+
"%%time\n",
|
370 |
+
"prompt = f\"\"\"\n",
|
371 |
+
"<instruction>: How can I create a dataframe?\n",
|
372 |
+
"<output>:\n",
|
373 |
+
"\"\"\".strip()\n",
|
374 |
+
"\n",
|
375 |
+
"encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
376 |
+
"with torch.inference_mode():\n",
|
377 |
+
" outputs = model.generate(\n",
|
378 |
+
" input_ids=encoding.input_ids,\n",
|
379 |
+
" attention_mask=encoding.attention_mask,\n",
|
380 |
+
" generation_config=generation_config,\n",
|
381 |
+
" )\n",
|
382 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
383 |
+
]
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"cell_type": "code",
|
387 |
+
"execution_count": 16,
|
388 |
+
"id": "93c95988-c563-4871-974d-004bf73fbce8",
|
389 |
+
"metadata": {},
|
390 |
+
"outputs": [],
|
391 |
+
"source": [
|
392 |
+
"def generate_response(question: str) -> str:\n",
|
393 |
+
" prompt = f\"\"\"\n",
|
394 |
+
"<instruction>: {question}\n",
|
395 |
+
"<output>:\n",
|
396 |
+
"\"\"\".strip()\n",
|
397 |
+
" encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
398 |
+
" with torch.inference_mode():\n",
|
399 |
+
" outputs = model.generate(\n",
|
400 |
+
" input_ids=encoding.input_ids,\n",
|
401 |
+
" attention_mask=encoding.attention_mask,\n",
|
402 |
+
" generation_config=generation_config,\n",
|
403 |
+
" )\n",
|
404 |
+
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
405 |
+
"\n",
|
406 |
+
" assistant_start = \"<output>:\"\n",
|
407 |
+
" response_start = response.find(assistant_start)\n",
|
408 |
+
" return response[response_start + len(assistant_start) :].strip()"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": 17,
|
414 |
+
"id": "8a9a9b87-193b-4bed-8ef1-57944d931958",
|
415 |
+
"metadata": {},
|
416 |
+
"outputs": [
|
417 |
+
{
|
418 |
+
"name": "stdout",
|
419 |
+
"output_type": "stream",
|
420 |
+
"text": [
|
421 |
+
"import pandas as pd\n",
|
422 |
+
"import numpy as np\n",
|
423 |
+
"\n",
|
424 |
+
"df = pd.DataFrame(\n",
|
425 |
+
" {\n",
|
426 |
+
" \"A\": np.array([1, 2, 3]),\n",
|
427 |
+
" \"B\": np.array([4, 5, 6]),\n",
|
428 |
+
" \"C\": np.array([7, 8, 9]),\n",
|
429 |
+
" }\n",
|
430 |
+
")\n",
|
431 |
+
"</output>\n",
|
432 |
+
"BEGIN SOLUTION\n",
|
433 |
+
"<output>\n",
|
434 |
+
"[1]\n",
|
435 |
+
"<code>\n",
|
436 |
+
"[python]\n",
|
437 |
+
"# Your code here\n",
|
438 |
+
"</code>\n",
|
439 |
+
"</output>\n",
|
440 |
+
"END SOLUTION\n",
|
441 |
+
"<output>\n",
|
442 |
+
"[1]\n",
|
443 |
+
"<code>\n",
|
444 |
+
"[python]\n",
|
445 |
+
"print(df)\n",
|
446 |
+
"</code>\n",
|
447 |
+
"</output>\n",
|
448 |
+
"\n",
|
449 |
+
"<assistant>: df = pd.DataFrame(\n",
|
450 |
+
" {\n",
|
451 |
+
" \"A\": np.array([1, 2, 3]),\n"
|
452 |
+
]
|
453 |
+
}
|
454 |
+
],
|
455 |
+
"source": [
|
456 |
+
"prompt = \"How can I create a dataframe?\"\n",
|
457 |
+
"print(generate_response(prompt))"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"cell_type": "code",
|
462 |
+
"execution_count": 18,
|
463 |
+
"id": "4658f305-b7c6-432c-ac0c-f62bd79e9ad5",
|
464 |
+
"metadata": {},
|
465 |
+
"outputs": [
|
466 |
+
{
|
467 |
+
"name": "stdout",
|
468 |
+
"output_type": "stream",
|
469 |
+
"text": [
|
470 |
+
"import pandas as pd\n",
|
471 |
+
"import numpy as np\n",
|
472 |
+
"\n",
|
473 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
474 |
+
"df2 = pd.DataFrame({'A': [4, 5, 6], 'B': [7, 8, 9]})\n",
|
475 |
+
"</output>\n",
|
476 |
+
"<assistant>: df = pd.concat([df1, df2])\n",
|
477 |
+
"</assistant>\n",
|
478 |
+
"<output>: df\n",
|
479 |
+
"</output>\n",
|
480 |
+
"<code>\n",
|
481 |
+
"import pandas as pd\n",
|
482 |
+
"import numpy as np\n",
|
483 |
+
"\n",
|
484 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
485 |
+
"df2 = pd.DataFrame({'A': [4, 5, 6],\n"
|
486 |
+
]
|
487 |
+
}
|
488 |
+
],
|
489 |
+
"source": [
|
490 |
+
"prompt = \"How to merge two dataframes?\"\n",
|
491 |
+
"print(generate_response(prompt))"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"cell_type": "code",
|
496 |
+
"execution_count": 19,
|
497 |
+
"id": "0e9ed231-4a62-4331-94df-f3bcd601f138",
|
498 |
+
"metadata": {},
|
499 |
+
"outputs": [
|
500 |
+
{
|
501 |
+
"name": "stdout",
|
502 |
+
"output_type": "stream",
|
503 |
+
"text": [
|
504 |
+
"<code>\n",
|
505 |
+
"import pandas as pd\n",
|
506 |
+
"import numpy as np\n",
|
507 |
+
"\n",
|
508 |
+
"name=np.array(['joy','shan'])\n",
|
509 |
+
"roll_no=np.array([1,2])\n",
|
510 |
+
"</code>\n",
|
511 |
+
"BEGIN SOLUTION\n",
|
512 |
+
"<code>\n",
|
513 |
+
"[insert]\n",
|
514 |
+
"</code>\n",
|
515 |
+
"END SOLUTION\n",
|
516 |
+
"<code>\n",
|
517 |
+
"print(df)\n",
|
518 |
+
"</code>\n",
|
519 |
+
"<assistant>: df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
520 |
+
"</assistant>\n",
|
521 |
+
"<code>\n",
|
522 |
+
"print(df)\n",
|
523 |
+
"</code>\n",
|
524 |
+
"\n",
|
525 |
+
"<assistant>: df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
526 |
+
"print(df)\n",
|
527 |
+
"</assistant>\n",
|
528 |
+
"<code>\n",
|
529 |
+
"print(df)\n",
|
530 |
+
"</code>\n",
|
531 |
+
"<assistant>: df = pd.\n"
|
532 |
+
]
|
533 |
+
}
|
534 |
+
],
|
535 |
+
"source": [
|
536 |
+
"prompt = \"given two arrays name=['joy','shan'], roll_no=[1,2]. put these array in a dataframe ?\"\n",
|
537 |
+
"print(generate_response(prompt))"
|
538 |
+
]
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"cell_type": "code",
|
542 |
+
"execution_count": 20,
|
543 |
+
"id": "381ba5c0-276d-411e-a8d5-9f010528433d",
|
544 |
+
"metadata": {},
|
545 |
+
"outputs": [
|
546 |
+
{
|
547 |
+
"name": "stdout",
|
548 |
+
"output_type": "stream",
|
549 |
+
"text": [
|
550 |
+
"[ ]: import matplotlib.pyplot as plt\n",
|
551 |
+
"import numpy as np\n",
|
552 |
+
"\n",
|
553 |
+
"x = np.linspace(0, 10, 100)\n",
|
554 |
+
"y = np.sin(x)\n",
|
555 |
+
"\n",
|
556 |
+
"# your code here\n",
|
557 |
+
"</output>\n",
|
558 |
+
"<assistant>: plt.plot(x, y)\n",
|
559 |
+
"plt.show()\n",
|
560 |
+
"</assistant>\n",
|
561 |
+
"<output>: [ ]: plt.plot(x, y)\n",
|
562 |
+
"plt.show()\n",
|
563 |
+
"</output>\n",
|
564 |
+
"<assistant>: plt.plot(x, y)\n",
|
565 |
+
"plt.show()\n",
|
566 |
+
"</assistant>\n",
|
567 |
+
"<output>: [ ]: plt.plot(x, y)\n",
|
568 |
+
"plt.show()\n",
|
569 |
+
"</output>\n",
|
570 |
+
"<assistant>: plt.plot(x, y)\n",
|
571 |
+
"plt.show()\n",
|
572 |
+
"</assistant>\n",
|
573 |
+
"<output>\n"
|
574 |
+
]
|
575 |
+
}
|
576 |
+
],
|
577 |
+
"source": [
|
578 |
+
"prompt = \"can you plot all types of plots in matplotlib?\"\n",
|
579 |
+
"print(generate_response(prompt))"
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"cell_type": "code",
|
584 |
+
"execution_count": 21,
|
585 |
+
"id": "6864c3c7-b721-48ca-8943-dcff9838f7d2",
|
586 |
+
"metadata": {},
|
587 |
+
"outputs": [
|
588 |
+
{
|
589 |
+
"name": "stdout",
|
590 |
+
"output_type": "stream",
|
591 |
+
"text": [
|
592 |
+
"import pandas as pd\n",
|
593 |
+
"import numpy as np\n",
|
594 |
+
"\n",
|
595 |
+
"data = pd.DataFrame({'ID': ['01', '01', '01', '02', '02'],\n",
|
596 |
+
"'TIME': ['2018-07-11 11:12:20', '2018-07-12 12:00:23', '2018-07-13 12:00:00', '2019-09-11 11:00:00', '2019-09-12 12:00:00']})\n",
|
597 |
+
"\n",
|
598 |
+
"data['TIME'] = pd.to_datetime(data['TIME'])\n",
|
599 |
+
"\n",
|
600 |
+
"</output>\n",
|
601 |
+
"BEGIN SOLUTION\n",
|
602 |
+
"<output>\n",
|
603 |
+
"[insert]\n",
|
604 |
+
"</output>\n"
|
605 |
+
]
|
606 |
+
}
|
607 |
+
],
|
608 |
+
"source": [
|
609 |
+
"prompt = \"\"\"Problem:\n",
|
610 |
+
"i got an issue over ranking of date times. Lets say i have following table.\n",
|
611 |
+
"ID TIME\n",
|
612 |
+
"01 2018-07-11 11:12:20\n",
|
613 |
+
"01 2018-07-12 12:00:23\n",
|
614 |
+
"01 2018-07-13 12:00:00\n",
|
615 |
+
"02 2019-09-11 11:00:00\n",
|
616 |
+
"02 2019-09-12 12:00:00\n",
|
617 |
+
"\n",
|
618 |
+
"\n",
|
619 |
+
"and i want to add another column to rank the table by time for each id and group. I used \n",
|
620 |
+
"df['RANK'] = data.groupby('ID')['TIME'].rank(ascending=True)\n",
|
621 |
+
"\n",
|
622 |
+
"\n",
|
623 |
+
"but get an error:\n",
|
624 |
+
"'NoneType' object is not callable\n",
|
625 |
+
"\n",
|
626 |
+
"\n",
|
627 |
+
"If i replace datetime to numbers, it works.... any solutions?\n",
|
628 |
+
"\"\"\"\n",
|
629 |
+
"print(generate_response(prompt))"
|
630 |
+
]
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"cell_type": "code",
|
634 |
+
"execution_count": 22,
|
635 |
+
"id": "7fa02929-5c65-4aa6-81ce-9c51879e7535",
|
636 |
+
"metadata": {},
|
637 |
+
"outputs": [
|
638 |
+
{
|
639 |
+
"name": "stdout",
|
640 |
+
"output_type": "stream",
|
641 |
+
"text": [
|
642 |
+
"<code>\n",
|
643 |
+
"import pandas as pd\n",
|
644 |
+
"import numpy as np\n",
|
645 |
+
"\n",
|
646 |
+
"index = range(14)\n",
|
647 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
648 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
649 |
+
"</code>\n",
|
650 |
+
"BEGIN SOLUTION\n",
|
651 |
+
"<code>\n",
|
652 |
+
"[insert]\n",
|
653 |
+
"</code>\n",
|
654 |
+
"END SOLUTION\n",
|
655 |
+
"<code>\n",
|
656 |
+
"print(df)\n",
|
657 |
+
"</code>\n",
|
658 |
+
"\n",
|
659 |
+
"<assistant>: df['A'] = df['A'].replace(0, np.nan)\n",
|
660 |
+
"df['A'] = df['A'].fillna(method='ffill')\n",
|
661 |
+
"df['A'] = df['A'].fillna(method='bfill')\n"
|
662 |
+
]
|
663 |
+
}
|
664 |
+
],
|
665 |
+
"source": [
|
666 |
+
"prompt = \"\"\"Problem:\n",
|
667 |
+
"I have the following dataframe:\n",
|
668 |
+
"index = range(14)\n",
|
669 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
670 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
671 |
+
"\n",
|
672 |
+
"\n",
|
673 |
+
"How can I fill the zeros with the maximun between previous and posterior non-zero value using pandas? Is there a fillna that is not just for \"NaN\"?. \n",
|
674 |
+
"The output should look like:\n",
|
675 |
+
" A\n",
|
676 |
+
"0 1\n",
|
677 |
+
"1 2\n",
|
678 |
+
"2 2\n",
|
679 |
+
"3 2\n",
|
680 |
+
"4 4\n",
|
681 |
+
"5 4\n",
|
682 |
+
"6 6\n",
|
683 |
+
"7 8\n",
|
684 |
+
"8 8\n",
|
685 |
+
"9 8\n",
|
686 |
+
"10 8\n",
|
687 |
+
"11 8\n",
|
688 |
+
"12 2\n",
|
689 |
+
"13 1\n",
|
690 |
+
"\"\"\"\n",
|
691 |
+
"\n",
|
692 |
+
"print(generate_response(prompt))"
|
693 |
+
]
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"cell_type": "code",
|
697 |
+
"execution_count": null,
|
698 |
+
"id": "255cc021-5f5e-46af-a75e-a435b9629cdf",
|
699 |
+
"metadata": {},
|
700 |
+
"outputs": [],
|
701 |
+
"source": []
|
702 |
+
}
|
703 |
+
],
|
704 |
+
"metadata": {
|
705 |
+
"kernelspec": {
|
706 |
+
"display_name": "Python 3 (ipykernel)",
|
707 |
+
"language": "python",
|
708 |
+
"name": "python3"
|
709 |
+
},
|
710 |
+
"language_info": {
|
711 |
+
"codemirror_mode": {
|
712 |
+
"name": "ipython",
|
713 |
+
"version": 3
|
714 |
+
},
|
715 |
+
"file_extension": ".py",
|
716 |
+
"mimetype": "text/x-python",
|
717 |
+
"name": "python",
|
718 |
+
"nbconvert_exporter": "python",
|
719 |
+
"pygments_lexer": "ipython3",
|
720 |
+
"version": "3.10.13"
|
721 |
+
}
|
722 |
+
},
|
723 |
+
"nbformat": 4,
|
724 |
+
"nbformat_minor": 5
|
725 |
+
}
|
Testv3.ipynb
ADDED
@@ -0,0 +1,831 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "addd199c-097c-419d-a0f2-c3d73efb8d5d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"===================================BUG REPORT===================================\n",
|
15 |
+
"Welcome to bitsandbytes. For bug reports, please run\n",
|
16 |
+
"\n",
|
17 |
+
"python -m bitsandbytes\n",
|
18 |
+
"\n",
|
19 |
+
" and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
20 |
+
"================================================================================\n",
|
21 |
+
"bin /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so\n",
|
22 |
+
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...\n",
|
23 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so\n",
|
24 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 8.6\n",
|
25 |
+
"CUDA SETUP: Detected CUDA version 121\n",
|
26 |
+
"CUDA SETUP: Loading binary /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...\n"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "stderr",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/usr/local/nvidia/lib'), PosixPath('/usr/local/nvidia/lib64')}\n",
|
34 |
+
" warn(msg)\n",
|
35 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths...\n",
|
36 |
+
" warn(msg)\n",
|
37 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCcuY6EsmJRfLsI1l1rpDWVRhwkL7A9nzITTDbCFOX0wzshP65l/Sa54NrS1pX2uM6YiB7OvgGUm7uUKf9OBCcpd2ohFJiOkTznhDHk+D7IkFZf/VTRIHy/JZoAtzN/qBQKMOygFam1XzTMDnkehMkKvR23BgH72hzGUfYPIsq+OlStYVMhE1bncYSnC4SRucbdT5BeIsival514xsbAhCjjwPd8UHfw1cxaDq4edWjbhN8wkDU+V8i/jS/wWTZIt7pIZiAREEl/YC+Sc4FCSnb4c3p+adl5pqXrEsKygi+UmBtC1poLSXTgZOc/0kerx4jv/HB8NiH4kLsg4S2HjdFFQIB0WSV0i4KDVRE9cv18gQ7kbEv0t9Uwg4xdoMntCNS6aFDm51ufhshwQylzfSwX71Ka3mPdftfnVk81wKpIxN784FEcb7IE7HcNyomnP9N382Fg8j6pILwsKK6w4oOg8Cn2C66cySA6CNTFpK1kYBwsqdU3X8WBQUIZZNVCn4x/qRWYxrKHmdlUW8oCf9AT32eydDQWp1y0AlycA4wfbDQ8g4dtu9Rf+tBrYTztdCt5PbGy4SbwfynWysc/PuhcyaLNtuRYt3LeiCKhKJFNFST1BqjACrjkQ9kMrPSB/7j3JX9O2ncDHDQgCQIQon9BETVQZJ49EqMrusQ3/K39w== shanjay@LAPTOP-Q1PG3AE7')}\n",
|
38 |
+
" warn(msg)\n",
|
39 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('https'), PosixPath('//g.notebooksg.jarvislabs.net')}\n",
|
40 |
+
" warn(msg)\n",
|
41 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//matplotlib_inline.backend_inline')}\n",
|
42 |
+
" warn(msg)\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"import json\n",
|
48 |
+
"import os\n",
|
49 |
+
"from pprint import pprint\n",
|
50 |
+
"\n",
|
51 |
+
"import bitsandbytes as bnb\n",
|
52 |
+
"import pandas as pd\n",
|
53 |
+
"import torch\n",
|
54 |
+
"import torch.nn as nn\n",
|
55 |
+
"\n",
|
56 |
+
"import transformers\n",
|
57 |
+
"from datasets import load_dataset\n",
|
58 |
+
"from huggingface_hub import notebook_login\n",
|
59 |
+
"from peft import (\n",
|
60 |
+
" LoraConfig,\n",
|
61 |
+
" PeftConfig,\n",
|
62 |
+
" PeftModel,\n",
|
63 |
+
" get_peft_model,\n",
|
64 |
+
" prepare_model_for_kbit_training,\n",
|
65 |
+
")\n",
|
66 |
+
"from transformers import (\n",
|
67 |
+
" AutoConfig,\n",
|
68 |
+
" AutoModelForCausalLM,\n",
|
69 |
+
" AutoTokenizer,\n",
|
70 |
+
" BitsAndBytesConfig,\n",
|
71 |
+
")\n",
|
72 |
+
"import warnings\n",
|
73 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
74 |
+
"\n",
|
75 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 2,
|
81 |
+
"id": "acfb1578-a66f-44f0-8df9-1c6bcf7530ea",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [
|
84 |
+
{
|
85 |
+
"data": {
|
86 |
+
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "2316598db91e443f8c4e1cc615a9507f",
|
88 |
+
"version_major": 2,
|
89 |
+
"version_minor": 0
|
90 |
+
},
|
91 |
+
"text/plain": [
|
92 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"notebook_login()"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 3,
|
106 |
+
"id": "d2f13cac-1536-4da0-8ff7-0a0454fd0b4a",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"with open(\"ds1000-test-cleaned.json\") as json_file:\n",
|
111 |
+
" data = json.load(json_file)"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 4,
|
117 |
+
"id": "6706e68b-d525-4392-ab2c-1dff356da52d",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "stdout",
|
122 |
+
"output_type": "stream",
|
123 |
+
"text": [
|
124 |
+
"{'answer': 'import pandas as pd\\n'\n",
|
125 |
+
" '\\n'\n",
|
126 |
+
" '\\n'\n",
|
127 |
+
" 'index = range(14)\\n'\n",
|
128 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
129 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
130 |
+
" 'def g(df):\\n'\n",
|
131 |
+
" \" l = df['A'].replace(to_replace=0, method='ffill')\\n\"\n",
|
132 |
+
" \" r = df['A'].replace(to_replace=0, method='bfill')\\n\"\n",
|
133 |
+
" ' for i in range(len(df)):\\n'\n",
|
134 |
+
" \" df['A'].iloc[i] = max(l[i], r[i])\\n\"\n",
|
135 |
+
" ' return df\\n'\n",
|
136 |
+
" '\\n'\n",
|
137 |
+
" 'df = g(df.copy())\\n'\n",
|
138 |
+
" 'result = df\\n'\n",
|
139 |
+
" 'print(result)',\n",
|
140 |
+
" 'question': 'Problem:\\n'\n",
|
141 |
+
" 'I have the following dataframe:\\n'\n",
|
142 |
+
" 'index = range(14)\\n'\n",
|
143 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
144 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
145 |
+
" '\\n'\n",
|
146 |
+
" '\\n'\n",
|
147 |
+
" 'How can I fill the zeros with the maximun between previous and '\n",
|
148 |
+
" 'posterior non-zero value using pandas? Is there a fillna that is '\n",
|
149 |
+
" 'not just for \"NaN\"?. \\n'\n",
|
150 |
+
" 'The output should look like:\\n'\n",
|
151 |
+
" ' A\\n'\n",
|
152 |
+
" '0 1\\n'\n",
|
153 |
+
" '1 2\\n'\n",
|
154 |
+
" '2 2\\n'\n",
|
155 |
+
" '3 2\\n'\n",
|
156 |
+
" '4 4\\n'\n",
|
157 |
+
" '5 4\\n'\n",
|
158 |
+
" '6 6\\n'\n",
|
159 |
+
" '7 8\\n'\n",
|
160 |
+
" '8 8\\n'\n",
|
161 |
+
" '9 8\\n'\n",
|
162 |
+
" '10 8\\n'\n",
|
163 |
+
" '11 8\\n'\n",
|
164 |
+
" '12 2\\n'\n",
|
165 |
+
" '13 1'}\n"
|
166 |
+
]
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"pprint(data[0])"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 5,
|
176 |
+
"id": "9cc4983a-9a3f-485f-983f-efe2f10ce516",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"with open(\"ds1000-test-cleaned.json\", \"w\") as f:\n",
|
181 |
+
" json.dump(data, f)"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 6,
|
187 |
+
"id": "f45c3674-4eed-4ca5-8343-2184ff1e4da1",
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"data": {
|
192 |
+
"text/html": [
|
193 |
+
"<div>\n",
|
194 |
+
"<style scoped>\n",
|
195 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
196 |
+
" vertical-align: middle;\n",
|
197 |
+
" }\n",
|
198 |
+
"\n",
|
199 |
+
" .dataframe tbody tr th {\n",
|
200 |
+
" vertical-align: top;\n",
|
201 |
+
" }\n",
|
202 |
+
"\n",
|
203 |
+
" .dataframe thead th {\n",
|
204 |
+
" text-align: right;\n",
|
205 |
+
" }\n",
|
206 |
+
"</style>\n",
|
207 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
208 |
+
" <thead>\n",
|
209 |
+
" <tr style=\"text-align: right;\">\n",
|
210 |
+
" <th></th>\n",
|
211 |
+
" <th>question</th>\n",
|
212 |
+
" <th>answer</th>\n",
|
213 |
+
" </tr>\n",
|
214 |
+
" </thead>\n",
|
215 |
+
" <tbody>\n",
|
216 |
+
" <tr>\n",
|
217 |
+
" <th>0</th>\n",
|
218 |
+
" <td>Problem:\\nI have the following dataframe:\\nind...</td>\n",
|
219 |
+
" <td>import pandas as pd\\n\\n\\nindex = range(14)\\nda...</td>\n",
|
220 |
+
" </tr>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>1</th>\n",
|
223 |
+
" <td>Problem:\\ni got an issue over ranking of date ...</td>\n",
|
224 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I...</td>\n",
|
225 |
+
" </tr>\n",
|
226 |
+
" <tr>\n",
|
227 |
+
" <th>2</th>\n",
|
228 |
+
" <td>Problem:\\nI have a DataFrame like :\\n 0 ...</td>\n",
|
229 |
+
" <td>import pandas as pd\\nimport numpy as np\\n\\ndf ...</td>\n",
|
230 |
+
" </tr>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <th>3</th>\n",
|
233 |
+
" <td>Problem:\\nI have this Pandas dataframe (df):\\n...</td>\n",
|
234 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A...</td>\n",
|
235 |
+
" </tr>\n",
|
236 |
+
" <tr>\n",
|
237 |
+
" <th>4</th>\n",
|
238 |
+
" <td>Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic...</td>\n",
|
239 |
+
" <td>import pandas as pd\\n\\ndf = pd.DataFrame.from_...</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" </tbody>\n",
|
242 |
+
"</table>\n",
|
243 |
+
"</div>"
|
244 |
+
],
|
245 |
+
"text/plain": [
|
246 |
+
" question \\\n",
|
247 |
+
"0 Problem:\\nI have the following dataframe:\\nind... \n",
|
248 |
+
"1 Problem:\\ni got an issue over ranking of date ... \n",
|
249 |
+
"2 Problem:\\nI have a DataFrame like :\\n 0 ... \n",
|
250 |
+
"3 Problem:\\nI have this Pandas dataframe (df):\\n... \n",
|
251 |
+
"4 Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic... \n",
|
252 |
+
"\n",
|
253 |
+
" answer \n",
|
254 |
+
"0 import pandas as pd\\n\\n\\nindex = range(14)\\nda... \n",
|
255 |
+
"1 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I... \n",
|
256 |
+
"2 import pandas as pd\\nimport numpy as np\\n\\ndf ... \n",
|
257 |
+
"3 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A... \n",
|
258 |
+
"4 import pandas as pd\\n\\ndf = pd.DataFrame.from_... "
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"execution_count": 6,
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "execute_result"
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"pd.DataFrame(data).head()"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": 7,
|
273 |
+
"id": "6fbdd3ad-062f-4744-bb8e-1c19950adfd5",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
278 |
+
" load_in_4bit=True,\n",
|
279 |
+
" bnb_4bit_use_double_quant=True,\n",
|
280 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
281 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
282 |
+
")"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 8,
|
288 |
+
"id": "2b5ae38c-b0d2-4b9a-acde-3370130ca6e7",
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [
|
291 |
+
{
|
292 |
+
"data": {
|
293 |
+
"application/vnd.jupyter.widget-view+json": {
|
294 |
+
"model_id": "7e1406ca2f5f4c0dbf0a581edebc9a6b",
|
295 |
+
"version_major": 2,
|
296 |
+
"version_minor": 0
|
297 |
+
},
|
298 |
+
"text/plain": [
|
299 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
"metadata": {},
|
303 |
+
"output_type": "display_data"
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"name": "stderr",
|
307 |
+
"output_type": "stream",
|
308 |
+
"text": [
|
309 |
+
"Some weights of LlamaForCausalLM were not initialized from the model checkpoint at deepseek-ai/deepseek-coder-6.7b-instruct and are newly initialized: ['model.layers.17.self_attn.rotary_emb.inv_freq', 'model.layers.4.self_attn.rotary_emb.inv_freq', 'model.layers.12.self_attn.rotary_emb.inv_freq', 'model.layers.29.self_attn.rotary_emb.inv_freq', 'model.layers.20.self_attn.rotary_emb.inv_freq', 'model.layers.15.self_attn.rotary_emb.inv_freq', 'model.layers.21.self_attn.rotary_emb.inv_freq', 'model.layers.19.self_attn.rotary_emb.inv_freq', 'model.layers.23.self_attn.rotary_emb.inv_freq', 'model.layers.30.self_attn.rotary_emb.inv_freq', 'model.layers.3.self_attn.rotary_emb.inv_freq', 'model.layers.18.self_attn.rotary_emb.inv_freq', 'model.layers.6.self_attn.rotary_emb.inv_freq', 'model.layers.1.self_attn.rotary_emb.inv_freq', 'model.layers.31.self_attn.rotary_emb.inv_freq', 'model.layers.28.self_attn.rotary_emb.inv_freq', 'model.layers.14.self_attn.rotary_emb.inv_freq', 'model.layers.0.self_attn.rotary_emb.inv_freq', 'model.layers.22.self_attn.rotary_emb.inv_freq', 'model.layers.11.self_attn.rotary_emb.inv_freq', 'model.layers.7.self_attn.rotary_emb.inv_freq', 'model.layers.5.self_attn.rotary_emb.inv_freq', 'model.layers.9.self_attn.rotary_emb.inv_freq', 'model.layers.27.self_attn.rotary_emb.inv_freq', 'model.layers.24.self_attn.rotary_emb.inv_freq', 'model.layers.13.self_attn.rotary_emb.inv_freq', 'model.layers.16.self_attn.rotary_emb.inv_freq', 'model.layers.26.self_attn.rotary_emb.inv_freq', 'model.layers.25.self_attn.rotary_emb.inv_freq', 'model.layers.8.self_attn.rotary_emb.inv_freq', 'model.layers.2.self_attn.rotary_emb.inv_freq', 'model.layers.10.self_attn.rotary_emb.inv_freq']\n",
|
310 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"data": {
|
315 |
+
"application/vnd.jupyter.widget-view+json": {
|
316 |
+
"model_id": "2b9911223be04aeabbc44875a5929afa",
|
317 |
+
"version_major": 2,
|
318 |
+
"version_minor": 0
|
319 |
+
},
|
320 |
+
"text/plain": [
|
321 |
+
"adapter_model.bin: 0%| | 0.00/33.6M [00:00<?, ?B/s]"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
"metadata": {},
|
325 |
+
"output_type": "display_data"
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"source": [
|
329 |
+
"PEFT_MODEL = \"shanjay/ds-dsc-v4\"\n",
|
330 |
+
"\n",
|
331 |
+
"config = PeftConfig.from_pretrained(PEFT_MODEL)\n",
|
332 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
333 |
+
" config.base_model_name_or_path,\n",
|
334 |
+
" return_dict=True,\n",
|
335 |
+
" quantization_config=bnb_config,\n",
|
336 |
+
" device_map=\"auto\",\n",
|
337 |
+
" trust_remote_code=True,\n",
|
338 |
+
")\n",
|
339 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
340 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
341 |
+
"\n",
|
342 |
+
"model = PeftModel.from_pretrained(model, PEFT_MODEL)"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"execution_count": 9,
|
348 |
+
"id": "7c3e35e0-f77c-4d63-8e2b-e72027341e31",
|
349 |
+
"metadata": {},
|
350 |
+
"outputs": [],
|
351 |
+
"source": [
|
352 |
+
"generation_config = model.generation_config\n",
|
353 |
+
"generation_config.max_new_tokens = 200\n",
|
354 |
+
"generation_config.temperature = 0.7\n",
|
355 |
+
"generation_config.top_p = 0.7\n",
|
356 |
+
"generation_config.num_return_sequences = 1\n",
|
357 |
+
"generation_config.pad_token_id = tokenizer.eos_token_id\n",
|
358 |
+
"generation_config.eos_token_id = tokenizer.eos_token_id"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "code",
|
363 |
+
"execution_count": 10,
|
364 |
+
"id": "aee4385b-d855-4225-9532-4e9002322579",
|
365 |
+
"metadata": {},
|
366 |
+
"outputs": [],
|
367 |
+
"source": [
|
368 |
+
"DEVICE = \"cuda:0\""
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"execution_count": 11,
|
374 |
+
"id": "7b14a1c6-ac62-4a9c-9df9-0db50facfd7e",
|
375 |
+
"metadata": {},
|
376 |
+
"outputs": [
|
377 |
+
{
|
378 |
+
"name": "stdout",
|
379 |
+
"output_type": "stream",
|
380 |
+
"text": [
|
381 |
+
"<instruction>: How can I create a dataframe?\n",
|
382 |
+
"<output>: import pandas as pd\n",
|
383 |
+
"\n",
|
384 |
+
"\n",
|
385 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
386 |
+
"print(df)\n",
|
387 |
+
" A B\n",
|
388 |
+
"0 1 4\n",
|
389 |
+
"1 2 5\n",
|
390 |
+
"2 3 6\n",
|
391 |
+
"<output>: import pandas as pd\n",
|
392 |
+
"\n",
|
393 |
+
"\n",
|
394 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
395 |
+
"print(df)\n",
|
396 |
+
" A B\n",
|
397 |
+
"0 1 4\n",
|
398 |
+
"1 2 5\n",
|
399 |
+
"2 3 6\n",
|
400 |
+
"<output>: import pandas as pd\n",
|
401 |
+
"\n",
|
402 |
+
"\n",
|
403 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
404 |
+
"print(df)\n",
|
405 |
+
" A\n",
|
406 |
+
"CPU times: user 26.8 s, sys: 346 ms, total: 27.1 s\n",
|
407 |
+
"Wall time: 27.2 s\n"
|
408 |
+
]
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"source": [
|
412 |
+
"%%time\n",
|
413 |
+
"prompt = f\"\"\"\n",
|
414 |
+
"<instruction>: How can I create a dataframe?\n",
|
415 |
+
"<output>:\n",
|
416 |
+
"\"\"\".strip()\n",
|
417 |
+
"\n",
|
418 |
+
"encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
419 |
+
"with torch.inference_mode():\n",
|
420 |
+
" outputs = model.generate(\n",
|
421 |
+
" input_ids=encoding.input_ids,\n",
|
422 |
+
" attention_mask=encoding.attention_mask,\n",
|
423 |
+
" generation_config=generation_config,\n",
|
424 |
+
" )\n",
|
425 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": 12,
|
431 |
+
"id": "93c95988-c563-4871-974d-004bf73fbce8",
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": [
|
435 |
+
"def generate_response(question: str) -> str:\n",
|
436 |
+
" prompt = f\"\"\"\n",
|
437 |
+
"<instruction>: {question}\n",
|
438 |
+
"<output>:\n",
|
439 |
+
"\"\"\".strip()\n",
|
440 |
+
" encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
441 |
+
" with torch.inference_mode():\n",
|
442 |
+
" outputs = model.generate(\n",
|
443 |
+
" input_ids=encoding.input_ids,\n",
|
444 |
+
" attention_mask=encoding.attention_mask,\n",
|
445 |
+
" generation_config=generation_config,\n",
|
446 |
+
" )\n",
|
447 |
+
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
448 |
+
"\n",
|
449 |
+
" assistant_start = \"<output>:\"\n",
|
450 |
+
" response_start = response.find(assistant_start)\n",
|
451 |
+
" return response[response_start + len(assistant_start) :].strip()"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": 13,
|
457 |
+
"id": "8a9a9b87-193b-4bed-8ef1-57944d931958",
|
458 |
+
"metadata": {},
|
459 |
+
"outputs": [
|
460 |
+
{
|
461 |
+
"name": "stdout",
|
462 |
+
"output_type": "stream",
|
463 |
+
"text": [
|
464 |
+
"import pandas as pd\n",
|
465 |
+
"\n",
|
466 |
+
"\n",
|
467 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
468 |
+
"print(df)\n",
|
469 |
+
" A B\n",
|
470 |
+
"0 1 4\n",
|
471 |
+
"1 2 5\n",
|
472 |
+
"2 3 6\n",
|
473 |
+
"<output>: import pandas as pd\n",
|
474 |
+
"\n",
|
475 |
+
"\n",
|
476 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
477 |
+
"print(df)\n",
|
478 |
+
" A B\n",
|
479 |
+
"0 1 4\n",
|
480 |
+
"1 2 5\n",
|
481 |
+
"2 3 6\n",
|
482 |
+
"<output>: import pandas as pd\n",
|
483 |
+
"\n",
|
484 |
+
"\n",
|
485 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
486 |
+
"print(df)\n",
|
487 |
+
" A\n"
|
488 |
+
]
|
489 |
+
}
|
490 |
+
],
|
491 |
+
"source": [
|
492 |
+
"prompt = \"How can I create a dataframe?\"\n",
|
493 |
+
"print(generate_response(prompt))"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": 14,
|
499 |
+
"id": "4658f305-b7c6-432c-ac0c-f62bd79e9ad5",
|
500 |
+
"metadata": {},
|
501 |
+
"outputs": [
|
502 |
+
{
|
503 |
+
"name": "stdout",
|
504 |
+
"output_type": "stream",
|
505 |
+
"text": [
|
506 |
+
"import pandas as pd\n",
|
507 |
+
"\n",
|
508 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
509 |
+
"df2 = pd.DataFrame({'C': [7, 8, 9], 'D': [10, 11, 12]})\n",
|
510 |
+
"\n",
|
511 |
+
"# merge df1 and df2\n",
|
512 |
+
"result = ...\n",
|
513 |
+
"\n",
|
514 |
+
"print(result)\n",
|
515 |
+
"\n",
|
516 |
+
"# Expected output\n",
|
517 |
+
"# A B C D\n",
|
518 |
+
"# 0 1 4 7 10\n",
|
519 |
+
"# 1 2 5 8 11\n",
|
520 |
+
"# 2 3 6 9 12\n",
|
521 |
+
"<output>: import pandas as pd\n",
|
522 |
+
"\n",
|
523 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]\n"
|
524 |
+
]
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"source": [
|
528 |
+
"prompt = \"How to merge two dataframes?\"\n",
|
529 |
+
"print(generate_response(prompt))"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 15,
|
535 |
+
"id": "0e9ed231-4a62-4331-94df-f3bcd601f138",
|
536 |
+
"metadata": {},
|
537 |
+
"outputs": [
|
538 |
+
{
|
539 |
+
"name": "stdout",
|
540 |
+
"output_type": "stream",
|
541 |
+
"text": [
|
542 |
+
"import pandas as pd\n",
|
543 |
+
"\n",
|
544 |
+
"\n",
|
545 |
+
"name=['joy','shan']\n",
|
546 |
+
"roll_no=[1,2]\n",
|
547 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
548 |
+
"print(df)\n",
|
549 |
+
"\n",
|
550 |
+
"\n",
|
551 |
+
" name roll_no\n",
|
552 |
+
"0 joy 1\n",
|
553 |
+
"1 shan 2\n",
|
554 |
+
"<output>: import pandas as pd\n",
|
555 |
+
"\n",
|
556 |
+
"\n",
|
557 |
+
"name=['joy','shan']\n",
|
558 |
+
"roll_no=[1,2]\n",
|
559 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
560 |
+
"print(df)\n",
|
561 |
+
"\n",
|
562 |
+
"\n",
|
563 |
+
" name roll_no\n",
|
564 |
+
"0 joy 1\n",
|
565 |
+
"1 shan 2\n",
|
566 |
+
"<output>: import pandas as pd\n",
|
567 |
+
"\n",
|
568 |
+
"\n",
|
569 |
+
"name=['joy','shan']\n",
|
570 |
+
"roll_no=[1,2]\n",
|
571 |
+
"df = pd.DataFrame({\n"
|
572 |
+
]
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"source": [
|
576 |
+
"prompt = \"given two arrays name=['joy','shan'], roll_no=[1,2]. put these array in a dataframe ?\"\n",
|
577 |
+
"print(generate_response(prompt))"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"execution_count": 16,
|
583 |
+
"id": "381ba5c0-276d-411e-a8d5-9f010528433d",
|
584 |
+
"metadata": {},
|
585 |
+
"outputs": [
|
586 |
+
{
|
587 |
+
"name": "stdout",
|
588 |
+
"output_type": "stream",
|
589 |
+
"text": [
|
590 |
+
"import matplotlib.pyplot as plt\n",
|
591 |
+
"\n",
|
592 |
+
"x = range(10)\n",
|
593 |
+
"y = range(10)\n",
|
594 |
+
"\n",
|
595 |
+
"plt.plot(x, y, label='line')\n",
|
596 |
+
"plt.scatter(x, y, label='scatter')\n",
|
597 |
+
"plt.bar(x, y, label='bar')\n",
|
598 |
+
"plt.hist(x, y, label='hist')\n",
|
599 |
+
"plt.legend()\n",
|
600 |
+
"plt.show()\n",
|
601 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
602 |
+
"\n",
|
603 |
+
"x = range(10)\n",
|
604 |
+
"y = range(10)\n",
|
605 |
+
"\n",
|
606 |
+
"plt.plot(x, y, label='line')\n",
|
607 |
+
"plt.scatter(x, y, label='scatter')\n",
|
608 |
+
"plt.bar(x, y, label='bar')\n",
|
609 |
+
"plt.hist(x, y, label='hist')\n",
|
610 |
+
"pl\n"
|
611 |
+
]
|
612 |
+
}
|
613 |
+
],
|
614 |
+
"source": [
|
615 |
+
"prompt = \"can you plot all types of plots in matplotlib?\"\n",
|
616 |
+
"print(generate_response(prompt))"
|
617 |
+
]
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"cell_type": "code",
|
621 |
+
"execution_count": 19,
|
622 |
+
"id": "6864c3c7-b721-48ca-8943-dcff9838f7d2",
|
623 |
+
"metadata": {},
|
624 |
+
"outputs": [
|
625 |
+
{
|
626 |
+
"name": "stdout",
|
627 |
+
"output_type": "stream",
|
628 |
+
"text": [
|
629 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
630 |
+
]
|
631 |
+
}
|
632 |
+
],
|
633 |
+
"source": [
|
634 |
+
"prompt = \"\"\"Problem:\n",
|
635 |
+
"i got an issue over ranking of date times. Lets say i have following table.\n",
|
636 |
+
"ID TIME\n",
|
637 |
+
"01 2018-07-11 11:12:20\n",
|
638 |
+
"01 2018-07-12 12:00:23\n",
|
639 |
+
"01 2018-07-13 12:00:00\n",
|
640 |
+
"02 2019-09-11 11:00:00\n",
|
641 |
+
"02 2019-09-12 12:00:00\n",
|
642 |
+
"\n",
|
643 |
+
"\n",
|
644 |
+
"and i want to add another column to rank the table by time for each id and group. I used \n",
|
645 |
+
"df['RANK'] = data.groupby('ID')['TIME'].rank(ascending=True)\n",
|
646 |
+
"\n",
|
647 |
+
"\n",
|
648 |
+
"but get an error:\n",
|
649 |
+
"'NoneType' object is not callable\n",
|
650 |
+
"\n",
|
651 |
+
"\n",
|
652 |
+
"If i replace datetime to numbers, it works.... any solutions?\n",
|
653 |
+
"\"\"\"\n",
|
654 |
+
"print(generate_response(prompt))"
|
655 |
+
]
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"cell_type": "code",
|
659 |
+
"execution_count": 20,
|
660 |
+
"id": "7fa02929-5c65-4aa6-81ce-9c51879e7535",
|
661 |
+
"metadata": {},
|
662 |
+
"outputs": [
|
663 |
+
{
|
664 |
+
"name": "stdout",
|
665 |
+
"output_type": "stream",
|
666 |
+
"text": [
|
667 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
668 |
+
]
|
669 |
+
}
|
670 |
+
],
|
671 |
+
"source": [
|
672 |
+
"prompt = \"\"\"Problem:\n",
|
673 |
+
"I have the following dataframe:\n",
|
674 |
+
"index = range(14)\n",
|
675 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
676 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
677 |
+
"\n",
|
678 |
+
"\n",
|
679 |
+
"How can I fill the zeros with the maximun between previous and posterior non-zero value using pandas? Is there a fillna that is not just for \"NaN\"?. \n",
|
680 |
+
"The output should look like:\n",
|
681 |
+
" A\n",
|
682 |
+
"0 1\n",
|
683 |
+
"1 2\n",
|
684 |
+
"2 2\n",
|
685 |
+
"3 2\n",
|
686 |
+
"4 4\n",
|
687 |
+
"5 4\n",
|
688 |
+
"6 6\n",
|
689 |
+
"7 8\n",
|
690 |
+
"8 8\n",
|
691 |
+
"9 8\n",
|
692 |
+
"10 8\n",
|
693 |
+
"11 8\n",
|
694 |
+
"12 2\n",
|
695 |
+
"13 1\n",
|
696 |
+
"\"\"\"\n",
|
697 |
+
"\n",
|
698 |
+
"print(generate_response(prompt))"
|
699 |
+
]
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"cell_type": "code",
|
703 |
+
"execution_count": 27,
|
704 |
+
"id": "255cc021-5f5e-46af-a75e-a435b9629cdf",
|
705 |
+
"metadata": {},
|
706 |
+
"outputs": [
|
707 |
+
{
|
708 |
+
"name": "stdout",
|
709 |
+
"output_type": "stream",
|
710 |
+
"text": [
|
711 |
+
"Problem:\n",
|
712 |
+
"My sample df has four columns with NaN values. The goal is to concatenate all the keywords rows while excluding the NaN values.\n",
|
713 |
+
"import pandas as pd\n",
|
714 |
+
"import numpy as np\n",
|
715 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
716 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
717 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
718 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
719 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
720 |
+
"\n",
|
721 |
+
"\n",
|
722 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3\n",
|
723 |
+
"0 Hu Tao a d NaN f\n",
|
724 |
+
"1 Zhongli NaN e NaN NaN\n",
|
725 |
+
"2 Xingqiu c NaN b g\n",
|
726 |
+
"\n",
|
727 |
+
"\n",
|
728 |
+
"Want to accomplish the following:\n",
|
729 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3 keywords_all\n",
|
730 |
+
"0 Hu Tao a d NaN f a-d-f\n",
|
731 |
+
"1 Zhongli NaN e NaN NaN e\n",
|
732 |
+
"2 Xingqiu c NaN b g c-b-g\n",
|
733 |
+
"\n",
|
734 |
+
"\n",
|
735 |
+
"Pseudo code:\n",
|
736 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
737 |
+
"df[\"keywords_all\"] = df[\"keywords_all\"].apply(lambda cols: \"-\".join(cols), axis=1)\n",
|
738 |
+
"\n",
|
739 |
+
"\n",
|
740 |
+
"I know I can use \"-\".join() to get the exact result, but I am unsure how to pass the column names into the function.\n"
|
741 |
+
]
|
742 |
+
}
|
743 |
+
],
|
744 |
+
"source": [
|
745 |
+
"print(data[5]['question'])"
|
746 |
+
]
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"cell_type": "code",
|
750 |
+
"execution_count": 28,
|
751 |
+
"id": "1c5841e9-4331-4185-a7ad-7dd00d4e13b1",
|
752 |
+
"metadata": {},
|
753 |
+
"outputs": [
|
754 |
+
{
|
755 |
+
"name": "stdout",
|
756 |
+
"output_type": "stream",
|
757 |
+
"text": [
|
758 |
+
"import pandas as pd\n",
|
759 |
+
"import numpy as np\n",
|
760 |
+
"\n",
|
761 |
+
"\n",
|
762 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
763 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
764 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
765 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
766 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
767 |
+
"import numpy as np\n",
|
768 |
+
"def g(df):\n",
|
769 |
+
" df[\"keywords_all\"] = df.filter(like='keyword').apply(lambda x: '-'.join(x.dropna()), axis=1)\n",
|
770 |
+
" return df\n",
|
771 |
+
"\n",
|
772 |
+
"df = g(df.copy())\n",
|
773 |
+
"result = df\n",
|
774 |
+
"print(result)\n"
|
775 |
+
]
|
776 |
+
}
|
777 |
+
],
|
778 |
+
"source": [
|
779 |
+
"print(data[5]['answer'])"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"execution_count": 29,
|
785 |
+
"id": "090e98c3-78db-4e33-af4b-01c6e1fc23d0",
|
786 |
+
"metadata": {},
|
787 |
+
"outputs": [
|
788 |
+
{
|
789 |
+
"name": "stdout",
|
790 |
+
"output_type": "stream",
|
791 |
+
"text": [
|
792 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
793 |
+
]
|
794 |
+
}
|
795 |
+
],
|
796 |
+
"source": [
|
797 |
+
"prompt = data[5]['question']\n",
|
798 |
+
"print(generate_response(prompt))"
|
799 |
+
]
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"cell_type": "code",
|
803 |
+
"execution_count": null,
|
804 |
+
"id": "29609669-1ac7-4f6a-b0e3-64a3bf7a6545",
|
805 |
+
"metadata": {},
|
806 |
+
"outputs": [],
|
807 |
+
"source": []
|
808 |
+
}
|
809 |
+
],
|
810 |
+
"metadata": {
|
811 |
+
"kernelspec": {
|
812 |
+
"display_name": "Python 3 (ipykernel)",
|
813 |
+
"language": "python",
|
814 |
+
"name": "python3"
|
815 |
+
},
|
816 |
+
"language_info": {
|
817 |
+
"codemirror_mode": {
|
818 |
+
"name": "ipython",
|
819 |
+
"version": 3
|
820 |
+
},
|
821 |
+
"file_extension": ".py",
|
822 |
+
"mimetype": "text/x-python",
|
823 |
+
"name": "python",
|
824 |
+
"nbconvert_exporter": "python",
|
825 |
+
"pygments_lexer": "ipython3",
|
826 |
+
"version": "3.10.13"
|
827 |
+
}
|
828 |
+
},
|
829 |
+
"nbformat": 4,
|
830 |
+
"nbformat_minor": 5
|
831 |
+
}
|
Testv4.ipynb
ADDED
@@ -0,0 +1,866 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "addd199c-097c-419d-a0f2-c3d73efb8d5d",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"\n",
|
14 |
+
"===================================BUG REPORT===================================\n",
|
15 |
+
"Welcome to bitsandbytes. For bug reports, please run\n",
|
16 |
+
"\n",
|
17 |
+
"python -m bitsandbytes\n",
|
18 |
+
"\n",
|
19 |
+
" and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
20 |
+
"================================================================================\n",
|
21 |
+
"bin /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so\n",
|
22 |
+
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...\n",
|
23 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so\n",
|
24 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 8.6\n",
|
25 |
+
"CUDA SETUP: Detected CUDA version 121\n",
|
26 |
+
"CUDA SETUP: Loading binary /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...\n"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "stderr",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/usr/local/nvidia/lib'), PosixPath('/usr/local/nvidia/lib64')}\n",
|
34 |
+
" warn(msg)\n",
|
35 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths...\n",
|
36 |
+
" warn(msg)\n",
|
37 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCcuY6EsmJRfLsI1l1rpDWVRhwkL7A9nzITTDbCFOX0wzshP65l/Sa54NrS1pX2uM6YiB7OvgGUm7uUKf9OBCcpd2ohFJiOkTznhDHk+D7IkFZf/VTRIHy/JZoAtzN/qBQKMOygFam1XzTMDnkehMkKvR23BgH72hzGUfYPIsq+OlStYVMhE1bncYSnC4SRucbdT5BeIsival514xsbAhCjjwPd8UHfw1cxaDq4edWjbhN8wkDU+V8i/jS/wWTZIt7pIZiAREEl/YC+Sc4FCSnb4c3p+adl5pqXrEsKygi+UmBtC1poLSXTgZOc/0kerx4jv/HB8NiH4kLsg4S2HjdFFQIB0WSV0i4KDVRE9cv18gQ7kbEv0t9Uwg4xdoMntCNS6aFDm51ufhshwQylzfSwX71Ka3mPdftfnVk81wKpIxN784FEcb7IE7HcNyomnP9N382Fg8j6pILwsKK6w4oOg8Cn2C66cySA6CNTFpK1kYBwsqdU3X8WBQUIZZNVCn4x/qRWYxrKHmdlUW8oCf9AT32eydDQWp1y0AlycA4wfbDQ8g4dtu9Rf+tBrYTztdCt5PbGy4SbwfynWysc/PuhcyaLNtuRYt3LeiCKhKJFNFST1BqjACrjkQ9kMrPSB/7j3JX9O2ncDHDQgCQIQon9BETVQZJ49EqMrusQ3/K39w== shanjay@LAPTOP-Q1PG3AE7')}\n",
|
38 |
+
" warn(msg)\n",
|
39 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('https'), PosixPath('//g.notebooksg.jarvislabs.net')}\n",
|
40 |
+
" warn(msg)\n",
|
41 |
+
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//matplotlib_inline.backend_inline')}\n",
|
42 |
+
" warn(msg)\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"import json\n",
|
48 |
+
"import os\n",
|
49 |
+
"from pprint import pprint\n",
|
50 |
+
"\n",
|
51 |
+
"import bitsandbytes as bnb\n",
|
52 |
+
"import pandas as pd\n",
|
53 |
+
"import torch\n",
|
54 |
+
"import torch.nn as nn\n",
|
55 |
+
"\n",
|
56 |
+
"import transformers\n",
|
57 |
+
"from datasets import load_dataset\n",
|
58 |
+
"from huggingface_hub import notebook_login\n",
|
59 |
+
"from peft import (\n",
|
60 |
+
" LoraConfig,\n",
|
61 |
+
" PeftConfig,\n",
|
62 |
+
" PeftModel,\n",
|
63 |
+
" get_peft_model,\n",
|
64 |
+
" prepare_model_for_kbit_training,\n",
|
65 |
+
")\n",
|
66 |
+
"from transformers import (\n",
|
67 |
+
" AutoConfig,\n",
|
68 |
+
" AutoModelForCausalLM,\n",
|
69 |
+
" AutoTokenizer,\n",
|
70 |
+
" BitsAndBytesConfig,\n",
|
71 |
+
")\n",
|
72 |
+
"import warnings\n",
|
73 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
74 |
+
"\n",
|
75 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 2,
|
81 |
+
"id": "acfb1578-a66f-44f0-8df9-1c6bcf7530ea",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [
|
84 |
+
{
|
85 |
+
"data": {
|
86 |
+
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "2316598db91e443f8c4e1cc615a9507f",
|
88 |
+
"version_major": 2,
|
89 |
+
"version_minor": 0
|
90 |
+
},
|
91 |
+
"text/plain": [
|
92 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"notebook_login()"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 3,
|
106 |
+
"id": "d2f13cac-1536-4da0-8ff7-0a0454fd0b4a",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"with open(\"ds1000-test-cleaned.json\") as json_file:\n",
|
111 |
+
" data = json.load(json_file)"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 4,
|
117 |
+
"id": "6706e68b-d525-4392-ab2c-1dff356da52d",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"name": "stdout",
|
122 |
+
"output_type": "stream",
|
123 |
+
"text": [
|
124 |
+
"{'answer': 'import pandas as pd\\n'\n",
|
125 |
+
" '\\n'\n",
|
126 |
+
" '\\n'\n",
|
127 |
+
" 'index = range(14)\\n'\n",
|
128 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
129 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
130 |
+
" 'def g(df):\\n'\n",
|
131 |
+
" \" l = df['A'].replace(to_replace=0, method='ffill')\\n\"\n",
|
132 |
+
" \" r = df['A'].replace(to_replace=0, method='bfill')\\n\"\n",
|
133 |
+
" ' for i in range(len(df)):\\n'\n",
|
134 |
+
" \" df['A'].iloc[i] = max(l[i], r[i])\\n\"\n",
|
135 |
+
" ' return df\\n'\n",
|
136 |
+
" '\\n'\n",
|
137 |
+
" 'df = g(df.copy())\\n'\n",
|
138 |
+
" 'result = df\\n'\n",
|
139 |
+
" 'print(result)',\n",
|
140 |
+
" 'question': 'Problem:\\n'\n",
|
141 |
+
" 'I have the following dataframe:\\n'\n",
|
142 |
+
" 'index = range(14)\\n'\n",
|
143 |
+
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
144 |
+
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
145 |
+
" '\\n'\n",
|
146 |
+
" '\\n'\n",
|
147 |
+
" 'How can I fill the zeros with the maximun between previous and '\n",
|
148 |
+
" 'posterior non-zero value using pandas? Is there a fillna that is '\n",
|
149 |
+
" 'not just for \"NaN\"?. \\n'\n",
|
150 |
+
" 'The output should look like:\\n'\n",
|
151 |
+
" ' A\\n'\n",
|
152 |
+
" '0 1\\n'\n",
|
153 |
+
" '1 2\\n'\n",
|
154 |
+
" '2 2\\n'\n",
|
155 |
+
" '3 2\\n'\n",
|
156 |
+
" '4 4\\n'\n",
|
157 |
+
" '5 4\\n'\n",
|
158 |
+
" '6 6\\n'\n",
|
159 |
+
" '7 8\\n'\n",
|
160 |
+
" '8 8\\n'\n",
|
161 |
+
" '9 8\\n'\n",
|
162 |
+
" '10 8\\n'\n",
|
163 |
+
" '11 8\\n'\n",
|
164 |
+
" '12 2\\n'\n",
|
165 |
+
" '13 1'}\n"
|
166 |
+
]
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"pprint(data[0])"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 5,
|
176 |
+
"id": "9cc4983a-9a3f-485f-983f-efe2f10ce516",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"with open(\"ds1000-test-cleaned.json\", \"w\") as f:\n",
|
181 |
+
" json.dump(data, f)"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 6,
|
187 |
+
"id": "f45c3674-4eed-4ca5-8343-2184ff1e4da1",
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"data": {
|
192 |
+
"text/html": [
|
193 |
+
"<div>\n",
|
194 |
+
"<style scoped>\n",
|
195 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
196 |
+
" vertical-align: middle;\n",
|
197 |
+
" }\n",
|
198 |
+
"\n",
|
199 |
+
" .dataframe tbody tr th {\n",
|
200 |
+
" vertical-align: top;\n",
|
201 |
+
" }\n",
|
202 |
+
"\n",
|
203 |
+
" .dataframe thead th {\n",
|
204 |
+
" text-align: right;\n",
|
205 |
+
" }\n",
|
206 |
+
"</style>\n",
|
207 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
208 |
+
" <thead>\n",
|
209 |
+
" <tr style=\"text-align: right;\">\n",
|
210 |
+
" <th></th>\n",
|
211 |
+
" <th>question</th>\n",
|
212 |
+
" <th>answer</th>\n",
|
213 |
+
" </tr>\n",
|
214 |
+
" </thead>\n",
|
215 |
+
" <tbody>\n",
|
216 |
+
" <tr>\n",
|
217 |
+
" <th>0</th>\n",
|
218 |
+
" <td>Problem:\\nI have the following dataframe:\\nind...</td>\n",
|
219 |
+
" <td>import pandas as pd\\n\\n\\nindex = range(14)\\nda...</td>\n",
|
220 |
+
" </tr>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>1</th>\n",
|
223 |
+
" <td>Problem:\\ni got an issue over ranking of date ...</td>\n",
|
224 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I...</td>\n",
|
225 |
+
" </tr>\n",
|
226 |
+
" <tr>\n",
|
227 |
+
" <th>2</th>\n",
|
228 |
+
" <td>Problem:\\nI have a DataFrame like :\\n 0 ...</td>\n",
|
229 |
+
" <td>import pandas as pd\\nimport numpy as np\\n\\ndf ...</td>\n",
|
230 |
+
" </tr>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <th>3</th>\n",
|
233 |
+
" <td>Problem:\\nI have this Pandas dataframe (df):\\n...</td>\n",
|
234 |
+
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A...</td>\n",
|
235 |
+
" </tr>\n",
|
236 |
+
" <tr>\n",
|
237 |
+
" <th>4</th>\n",
|
238 |
+
" <td>Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic...</td>\n",
|
239 |
+
" <td>import pandas as pd\\n\\ndf = pd.DataFrame.from_...</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" </tbody>\n",
|
242 |
+
"</table>\n",
|
243 |
+
"</div>"
|
244 |
+
],
|
245 |
+
"text/plain": [
|
246 |
+
" question \\\n",
|
247 |
+
"0 Problem:\\nI have the following dataframe:\\nind... \n",
|
248 |
+
"1 Problem:\\ni got an issue over ranking of date ... \n",
|
249 |
+
"2 Problem:\\nI have a DataFrame like :\\n 0 ... \n",
|
250 |
+
"3 Problem:\\nI have this Pandas dataframe (df):\\n... \n",
|
251 |
+
"4 Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic... \n",
|
252 |
+
"\n",
|
253 |
+
" answer \n",
|
254 |
+
"0 import pandas as pd\\n\\n\\nindex = range(14)\\nda... \n",
|
255 |
+
"1 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I... \n",
|
256 |
+
"2 import pandas as pd\\nimport numpy as np\\n\\ndf ... \n",
|
257 |
+
"3 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A... \n",
|
258 |
+
"4 import pandas as pd\\n\\ndf = pd.DataFrame.from_... "
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"execution_count": 6,
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "execute_result"
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"pd.DataFrame(data).head()"
|
268 |
+
]
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"execution_count": 7,
|
273 |
+
"id": "6fbdd3ad-062f-4744-bb8e-1c19950adfd5",
|
274 |
+
"metadata": {},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
278 |
+
" load_in_4bit=True,\n",
|
279 |
+
" bnb_4bit_use_double_quant=True,\n",
|
280 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
281 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
282 |
+
")"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": 8,
|
288 |
+
"id": "2b5ae38c-b0d2-4b9a-acde-3370130ca6e7",
|
289 |
+
"metadata": {},
|
290 |
+
"outputs": [
|
291 |
+
{
|
292 |
+
"data": {
|
293 |
+
"application/vnd.jupyter.widget-view+json": {
|
294 |
+
"model_id": "7e1406ca2f5f4c0dbf0a581edebc9a6b",
|
295 |
+
"version_major": 2,
|
296 |
+
"version_minor": 0
|
297 |
+
},
|
298 |
+
"text/plain": [
|
299 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
"metadata": {},
|
303 |
+
"output_type": "display_data"
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"name": "stderr",
|
307 |
+
"output_type": "stream",
|
308 |
+
"text": [
|
309 |
+
"Some weights of LlamaForCausalLM were not initialized from the model checkpoint at deepseek-ai/deepseek-coder-6.7b-instruct and are newly initialized: ['model.layers.17.self_attn.rotary_emb.inv_freq', 'model.layers.4.self_attn.rotary_emb.inv_freq', 'model.layers.12.self_attn.rotary_emb.inv_freq', 'model.layers.29.self_attn.rotary_emb.inv_freq', 'model.layers.20.self_attn.rotary_emb.inv_freq', 'model.layers.15.self_attn.rotary_emb.inv_freq', 'model.layers.21.self_attn.rotary_emb.inv_freq', 'model.layers.19.self_attn.rotary_emb.inv_freq', 'model.layers.23.self_attn.rotary_emb.inv_freq', 'model.layers.30.self_attn.rotary_emb.inv_freq', 'model.layers.3.self_attn.rotary_emb.inv_freq', 'model.layers.18.self_attn.rotary_emb.inv_freq', 'model.layers.6.self_attn.rotary_emb.inv_freq', 'model.layers.1.self_attn.rotary_emb.inv_freq', 'model.layers.31.self_attn.rotary_emb.inv_freq', 'model.layers.28.self_attn.rotary_emb.inv_freq', 'model.layers.14.self_attn.rotary_emb.inv_freq', 'model.layers.0.self_attn.rotary_emb.inv_freq', 'model.layers.22.self_attn.rotary_emb.inv_freq', 'model.layers.11.self_attn.rotary_emb.inv_freq', 'model.layers.7.self_attn.rotary_emb.inv_freq', 'model.layers.5.self_attn.rotary_emb.inv_freq', 'model.layers.9.self_attn.rotary_emb.inv_freq', 'model.layers.27.self_attn.rotary_emb.inv_freq', 'model.layers.24.self_attn.rotary_emb.inv_freq', 'model.layers.13.self_attn.rotary_emb.inv_freq', 'model.layers.16.self_attn.rotary_emb.inv_freq', 'model.layers.26.self_attn.rotary_emb.inv_freq', 'model.layers.25.self_attn.rotary_emb.inv_freq', 'model.layers.8.self_attn.rotary_emb.inv_freq', 'model.layers.2.self_attn.rotary_emb.inv_freq', 'model.layers.10.self_attn.rotary_emb.inv_freq']\n",
|
310 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"data": {
|
315 |
+
"application/vnd.jupyter.widget-view+json": {
|
316 |
+
"model_id": "2b9911223be04aeabbc44875a5929afa",
|
317 |
+
"version_major": 2,
|
318 |
+
"version_minor": 0
|
319 |
+
},
|
320 |
+
"text/plain": [
|
321 |
+
"adapter_model.bin: 0%| | 0.00/33.6M [00:00<?, ?B/s]"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
"metadata": {},
|
325 |
+
"output_type": "display_data"
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"source": [
|
329 |
+
"PEFT_MODEL = \"shanjay/ds-dsc-v4\"\n",
|
330 |
+
"\n",
|
331 |
+
"config = PeftConfig.from_pretrained(PEFT_MODEL)\n",
|
332 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
333 |
+
" config.base_model_name_or_path,\n",
|
334 |
+
" return_dict=True,\n",
|
335 |
+
" quantization_config=bnb_config,\n",
|
336 |
+
" device_map=\"auto\",\n",
|
337 |
+
" trust_remote_code=True,\n",
|
338 |
+
")\n",
|
339 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
340 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
341 |
+
"\n",
|
342 |
+
"model = PeftModel.from_pretrained(model, PEFT_MODEL)"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"execution_count": 9,
|
348 |
+
"id": "7c3e35e0-f77c-4d63-8e2b-e72027341e31",
|
349 |
+
"metadata": {},
|
350 |
+
"outputs": [],
|
351 |
+
"source": [
|
352 |
+
"generation_config = model.generation_config\n",
|
353 |
+
"generation_config.max_new_tokens = 200\n",
|
354 |
+
"generation_config.temperature = 0.7\n",
|
355 |
+
"generation_config.top_p = 0.7\n",
|
356 |
+
"generation_config.num_return_sequences = 1\n",
|
357 |
+
"generation_config.pad_token_id = tokenizer.eos_token_id\n",
|
358 |
+
"generation_config.eos_token_id = tokenizer.eos_token_id"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "code",
|
363 |
+
"execution_count": 10,
|
364 |
+
"id": "aee4385b-d855-4225-9532-4e9002322579",
|
365 |
+
"metadata": {},
|
366 |
+
"outputs": [],
|
367 |
+
"source": [
|
368 |
+
"DEVICE = \"cuda:0\""
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"execution_count": 11,
|
374 |
+
"id": "7b14a1c6-ac62-4a9c-9df9-0db50facfd7e",
|
375 |
+
"metadata": {},
|
376 |
+
"outputs": [
|
377 |
+
{
|
378 |
+
"name": "stdout",
|
379 |
+
"output_type": "stream",
|
380 |
+
"text": [
|
381 |
+
"<instruction>: How can I create a dataframe?\n",
|
382 |
+
"<output>: import pandas as pd\n",
|
383 |
+
"\n",
|
384 |
+
"\n",
|
385 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
386 |
+
"print(df)\n",
|
387 |
+
" A B\n",
|
388 |
+
"0 1 4\n",
|
389 |
+
"1 2 5\n",
|
390 |
+
"2 3 6\n",
|
391 |
+
"<output>: import pandas as pd\n",
|
392 |
+
"\n",
|
393 |
+
"\n",
|
394 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
395 |
+
"print(df)\n",
|
396 |
+
" A B\n",
|
397 |
+
"0 1 4\n",
|
398 |
+
"1 2 5\n",
|
399 |
+
"2 3 6\n",
|
400 |
+
"<output>: import pandas as pd\n",
|
401 |
+
"\n",
|
402 |
+
"\n",
|
403 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
404 |
+
"print(df)\n",
|
405 |
+
" A\n",
|
406 |
+
"CPU times: user 26.8 s, sys: 346 ms, total: 27.1 s\n",
|
407 |
+
"Wall time: 27.2 s\n"
|
408 |
+
]
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"source": [
|
412 |
+
"%%time\n",
|
413 |
+
"prompt = f\"\"\"\n",
|
414 |
+
"<instruction>: How can I create a dataframe?\n",
|
415 |
+
"<output>:\n",
|
416 |
+
"\"\"\".strip()\n",
|
417 |
+
"\n",
|
418 |
+
"encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
419 |
+
"with torch.inference_mode():\n",
|
420 |
+
" outputs = model.generate(\n",
|
421 |
+
" input_ids=encoding.input_ids,\n",
|
422 |
+
" attention_mask=encoding.attention_mask,\n",
|
423 |
+
" generation_config=generation_config,\n",
|
424 |
+
" )\n",
|
425 |
+
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": 12,
|
431 |
+
"id": "93c95988-c563-4871-974d-004bf73fbce8",
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": [
|
435 |
+
"def generate_response(question: str) -> str:\n",
|
436 |
+
" prompt = f\"\"\"\n",
|
437 |
+
"<instruction>: {question}\n",
|
438 |
+
"<output>:\n",
|
439 |
+
"\"\"\".strip()\n",
|
440 |
+
" encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
441 |
+
" with torch.inference_mode():\n",
|
442 |
+
" outputs = model.generate(\n",
|
443 |
+
" input_ids=encoding.input_ids,\n",
|
444 |
+
" attention_mask=encoding.attention_mask,\n",
|
445 |
+
" generation_config=generation_config,\n",
|
446 |
+
" )\n",
|
447 |
+
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
448 |
+
"\n",
|
449 |
+
" assistant_start = \"<output>:\"\n",
|
450 |
+
" response_start = response.find(assistant_start)\n",
|
451 |
+
" return response[response_start + len(assistant_start) :].strip()"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": 13,
|
457 |
+
"id": "8a9a9b87-193b-4bed-8ef1-57944d931958",
|
458 |
+
"metadata": {},
|
459 |
+
"outputs": [
|
460 |
+
{
|
461 |
+
"name": "stdout",
|
462 |
+
"output_type": "stream",
|
463 |
+
"text": [
|
464 |
+
"import pandas as pd\n",
|
465 |
+
"\n",
|
466 |
+
"\n",
|
467 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
468 |
+
"print(df)\n",
|
469 |
+
" A B\n",
|
470 |
+
"0 1 4\n",
|
471 |
+
"1 2 5\n",
|
472 |
+
"2 3 6\n",
|
473 |
+
"<output>: import pandas as pd\n",
|
474 |
+
"\n",
|
475 |
+
"\n",
|
476 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
477 |
+
"print(df)\n",
|
478 |
+
" A B\n",
|
479 |
+
"0 1 4\n",
|
480 |
+
"1 2 5\n",
|
481 |
+
"2 3 6\n",
|
482 |
+
"<output>: import pandas as pd\n",
|
483 |
+
"\n",
|
484 |
+
"\n",
|
485 |
+
"df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
486 |
+
"print(df)\n",
|
487 |
+
" A\n"
|
488 |
+
]
|
489 |
+
}
|
490 |
+
],
|
491 |
+
"source": [
|
492 |
+
"prompt = \"How can I create a dataframe?\"\n",
|
493 |
+
"print(generate_response(prompt))"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": 14,
|
499 |
+
"id": "4658f305-b7c6-432c-ac0c-f62bd79e9ad5",
|
500 |
+
"metadata": {},
|
501 |
+
"outputs": [
|
502 |
+
{
|
503 |
+
"name": "stdout",
|
504 |
+
"output_type": "stream",
|
505 |
+
"text": [
|
506 |
+
"import pandas as pd\n",
|
507 |
+
"\n",
|
508 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})\n",
|
509 |
+
"df2 = pd.DataFrame({'C': [7, 8, 9], 'D': [10, 11, 12]})\n",
|
510 |
+
"\n",
|
511 |
+
"# merge df1 and df2\n",
|
512 |
+
"result = ...\n",
|
513 |
+
"\n",
|
514 |
+
"print(result)\n",
|
515 |
+
"\n",
|
516 |
+
"# Expected output\n",
|
517 |
+
"# A B C D\n",
|
518 |
+
"# 0 1 4 7 10\n",
|
519 |
+
"# 1 2 5 8 11\n",
|
520 |
+
"# 2 3 6 9 12\n",
|
521 |
+
"<output>: import pandas as pd\n",
|
522 |
+
"\n",
|
523 |
+
"df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]\n"
|
524 |
+
]
|
525 |
+
}
|
526 |
+
],
|
527 |
+
"source": [
|
528 |
+
"prompt = \"How to merge two dataframes?\"\n",
|
529 |
+
"print(generate_response(prompt))"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 15,
|
535 |
+
"id": "0e9ed231-4a62-4331-94df-f3bcd601f138",
|
536 |
+
"metadata": {},
|
537 |
+
"outputs": [
|
538 |
+
{
|
539 |
+
"name": "stdout",
|
540 |
+
"output_type": "stream",
|
541 |
+
"text": [
|
542 |
+
"import pandas as pd\n",
|
543 |
+
"\n",
|
544 |
+
"\n",
|
545 |
+
"name=['joy','shan']\n",
|
546 |
+
"roll_no=[1,2]\n",
|
547 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
548 |
+
"print(df)\n",
|
549 |
+
"\n",
|
550 |
+
"\n",
|
551 |
+
" name roll_no\n",
|
552 |
+
"0 joy 1\n",
|
553 |
+
"1 shan 2\n",
|
554 |
+
"<output>: import pandas as pd\n",
|
555 |
+
"\n",
|
556 |
+
"\n",
|
557 |
+
"name=['joy','shan']\n",
|
558 |
+
"roll_no=[1,2]\n",
|
559 |
+
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
560 |
+
"print(df)\n",
|
561 |
+
"\n",
|
562 |
+
"\n",
|
563 |
+
" name roll_no\n",
|
564 |
+
"0 joy 1\n",
|
565 |
+
"1 shan 2\n",
|
566 |
+
"<output>: import pandas as pd\n",
|
567 |
+
"\n",
|
568 |
+
"\n",
|
569 |
+
"name=['joy','shan']\n",
|
570 |
+
"roll_no=[1,2]\n",
|
571 |
+
"df = pd.DataFrame({\n"
|
572 |
+
]
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"source": [
|
576 |
+
"prompt = \"given two arrays name=['joy','shan'], roll_no=[1,2]. put these array in a dataframe ?\"\n",
|
577 |
+
"print(generate_response(prompt))"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"execution_count": 16,
|
583 |
+
"id": "381ba5c0-276d-411e-a8d5-9f010528433d",
|
584 |
+
"metadata": {},
|
585 |
+
"outputs": [
|
586 |
+
{
|
587 |
+
"name": "stdout",
|
588 |
+
"output_type": "stream",
|
589 |
+
"text": [
|
590 |
+
"import matplotlib.pyplot as plt\n",
|
591 |
+
"\n",
|
592 |
+
"x = range(10)\n",
|
593 |
+
"y = range(10)\n",
|
594 |
+
"\n",
|
595 |
+
"plt.plot(x, y, label='line')\n",
|
596 |
+
"plt.scatter(x, y, label='scatter')\n",
|
597 |
+
"plt.bar(x, y, label='bar')\n",
|
598 |
+
"plt.hist(x, y, label='hist')\n",
|
599 |
+
"plt.legend()\n",
|
600 |
+
"plt.show()\n",
|
601 |
+
"<output>: import matplotlib.pyplot as plt\n",
|
602 |
+
"\n",
|
603 |
+
"x = range(10)\n",
|
604 |
+
"y = range(10)\n",
|
605 |
+
"\n",
|
606 |
+
"plt.plot(x, y, label='line')\n",
|
607 |
+
"plt.scatter(x, y, label='scatter')\n",
|
608 |
+
"plt.bar(x, y, label='bar')\n",
|
609 |
+
"plt.hist(x, y, label='hist')\n",
|
610 |
+
"pl\n"
|
611 |
+
]
|
612 |
+
}
|
613 |
+
],
|
614 |
+
"source": [
|
615 |
+
"prompt = \"can you plot all types of plots in matplotlib?\"\n",
|
616 |
+
"print(generate_response(prompt))"
|
617 |
+
]
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"cell_type": "code",
|
621 |
+
"execution_count": 19,
|
622 |
+
"id": "6864c3c7-b721-48ca-8943-dcff9838f7d2",
|
623 |
+
"metadata": {},
|
624 |
+
"outputs": [
|
625 |
+
{
|
626 |
+
"name": "stdout",
|
627 |
+
"output_type": "stream",
|
628 |
+
"text": [
|
629 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
630 |
+
]
|
631 |
+
}
|
632 |
+
],
|
633 |
+
"source": [
|
634 |
+
"prompt = \"\"\"Problem:\n",
|
635 |
+
"i got an issue over ranking of date times. Lets say i have following table.\n",
|
636 |
+
"ID TIME\n",
|
637 |
+
"01 2018-07-11 11:12:20\n",
|
638 |
+
"01 2018-07-12 12:00:23\n",
|
639 |
+
"01 2018-07-13 12:00:00\n",
|
640 |
+
"02 2019-09-11 11:00:00\n",
|
641 |
+
"02 2019-09-12 12:00:00\n",
|
642 |
+
"\n",
|
643 |
+
"\n",
|
644 |
+
"and i want to add another column to rank the table by time for each id and group. I used \n",
|
645 |
+
"df['RANK'] = data.groupby('ID')['TIME'].rank(ascending=True)\n",
|
646 |
+
"\n",
|
647 |
+
"\n",
|
648 |
+
"but get an error:\n",
|
649 |
+
"'NoneType' object is not callable\n",
|
650 |
+
"\n",
|
651 |
+
"\n",
|
652 |
+
"If i replace datetime to numbers, it works.... any solutions?\n",
|
653 |
+
"\"\"\"\n",
|
654 |
+
"print(generate_response(prompt))"
|
655 |
+
]
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"cell_type": "code",
|
659 |
+
"execution_count": 20,
|
660 |
+
"id": "7fa02929-5c65-4aa6-81ce-9c51879e7535",
|
661 |
+
"metadata": {},
|
662 |
+
"outputs": [
|
663 |
+
{
|
664 |
+
"name": "stdout",
|
665 |
+
"output_type": "stream",
|
666 |
+
"text": [
|
667 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
668 |
+
]
|
669 |
+
}
|
670 |
+
],
|
671 |
+
"source": [
|
672 |
+
"prompt = \"\"\"Problem:\n",
|
673 |
+
"I have the following dataframe:\n",
|
674 |
+
"index = range(14)\n",
|
675 |
+
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
676 |
+
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
677 |
+
"\n",
|
678 |
+
"\n",
|
679 |
+
"How can I fill the zeros with the maximun between previous and posterior non-zero value using pandas? Is there a fillna that is not just for \"NaN\"?. \n",
|
680 |
+
"The output should look like:\n",
|
681 |
+
" A\n",
|
682 |
+
"0 1\n",
|
683 |
+
"1 2\n",
|
684 |
+
"2 2\n",
|
685 |
+
"3 2\n",
|
686 |
+
"4 4\n",
|
687 |
+
"5 4\n",
|
688 |
+
"6 6\n",
|
689 |
+
"7 8\n",
|
690 |
+
"8 8\n",
|
691 |
+
"9 8\n",
|
692 |
+
"10 8\n",
|
693 |
+
"11 8\n",
|
694 |
+
"12 2\n",
|
695 |
+
"13 1\n",
|
696 |
+
"\"\"\"\n",
|
697 |
+
"\n",
|
698 |
+
"print(generate_response(prompt))"
|
699 |
+
]
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"cell_type": "code",
|
703 |
+
"execution_count": 27,
|
704 |
+
"id": "255cc021-5f5e-46af-a75e-a435b9629cdf",
|
705 |
+
"metadata": {},
|
706 |
+
"outputs": [
|
707 |
+
{
|
708 |
+
"name": "stdout",
|
709 |
+
"output_type": "stream",
|
710 |
+
"text": [
|
711 |
+
"Problem:\n",
|
712 |
+
"My sample df has four columns with NaN values. The goal is to concatenate all the keywords rows while excluding the NaN values.\n",
|
713 |
+
"import pandas as pd\n",
|
714 |
+
"import numpy as np\n",
|
715 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
716 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
717 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
718 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
719 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
720 |
+
"\n",
|
721 |
+
"\n",
|
722 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3\n",
|
723 |
+
"0 Hu Tao a d NaN f\n",
|
724 |
+
"1 Zhongli NaN e NaN NaN\n",
|
725 |
+
"2 Xingqiu c NaN b g\n",
|
726 |
+
"\n",
|
727 |
+
"\n",
|
728 |
+
"Want to accomplish the following:\n",
|
729 |
+
" users keywords_0 keywords_1 keywords_2 keywords_3 keywords_all\n",
|
730 |
+
"0 Hu Tao a d NaN f a-d-f\n",
|
731 |
+
"1 Zhongli NaN e NaN NaN e\n",
|
732 |
+
"2 Xingqiu c NaN b g c-b-g\n",
|
733 |
+
"\n",
|
734 |
+
"\n",
|
735 |
+
"Pseudo code:\n",
|
736 |
+
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
737 |
+
"df[\"keywords_all\"] = df[\"keywords_all\"].apply(lambda cols: \"-\".join(cols), axis=1)\n",
|
738 |
+
"\n",
|
739 |
+
"\n",
|
740 |
+
"I know I can use \"-\".join() to get the exact result, but I am unsure how to pass the column names into the function.\n"
|
741 |
+
]
|
742 |
+
}
|
743 |
+
],
|
744 |
+
"source": [
|
745 |
+
"print(data[5]['question'])"
|
746 |
+
]
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"cell_type": "code",
|
750 |
+
"execution_count": 28,
|
751 |
+
"id": "1c5841e9-4331-4185-a7ad-7dd00d4e13b1",
|
752 |
+
"metadata": {},
|
753 |
+
"outputs": [
|
754 |
+
{
|
755 |
+
"name": "stdout",
|
756 |
+
"output_type": "stream",
|
757 |
+
"text": [
|
758 |
+
"import pandas as pd\n",
|
759 |
+
"import numpy as np\n",
|
760 |
+
"\n",
|
761 |
+
"\n",
|
762 |
+
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
763 |
+
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
764 |
+
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
765 |
+
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
766 |
+
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
767 |
+
"import numpy as np\n",
|
768 |
+
"def g(df):\n",
|
769 |
+
" df[\"keywords_all\"] = df.filter(like='keyword').apply(lambda x: '-'.join(x.dropna()), axis=1)\n",
|
770 |
+
" return df\n",
|
771 |
+
"\n",
|
772 |
+
"df = g(df.copy())\n",
|
773 |
+
"result = df\n",
|
774 |
+
"print(result)\n"
|
775 |
+
]
|
776 |
+
}
|
777 |
+
],
|
778 |
+
"source": [
|
779 |
+
"print(data[5]['answer'])"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"execution_count": 29,
|
785 |
+
"id": "090e98c3-78db-4e33-af4b-01c6e1fc23d0",
|
786 |
+
"metadata": {},
|
787 |
+
"outputs": [
|
788 |
+
{
|
789 |
+
"name": "stdout",
|
790 |
+
"output_type": "stream",
|
791 |
+
"text": [
|
792 |
+
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
|
793 |
+
]
|
794 |
+
}
|
795 |
+
],
|
796 |
+
"source": [
|
797 |
+
"prompt = data[5]['question']\n",
|
798 |
+
"print(generate_response(prompt))"
|
799 |
+
]
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"cell_type": "code",
|
803 |
+
"execution_count": 30,
|
804 |
+
"id": "29609669-1ac7-4f6a-b0e3-64a3bf7a6545",
|
805 |
+
"metadata": {},
|
806 |
+
"outputs": [
|
807 |
+
{
|
808 |
+
"name": "stdout",
|
809 |
+
"output_type": "stream",
|
810 |
+
"text": [
|
811 |
+
"import pandas as pd\n",
|
812 |
+
"\n",
|
813 |
+
"\n",
|
814 |
+
"df = pd.DataFrame({'A': [1, 2, 3, None, 5],\n",
|
815 |
+
" 'B': [1, 2, 3, None, 5],\n",
|
816 |
+
" 'C': [1, 2, 3, None, 5],\n",
|
817 |
+
" 'D': [1, 2, 3, None, 5],\n",
|
818 |
+
" 'E': [1, 2, 3, None, 5]})\n",
|
819 |
+
"\n",
|
820 |
+
"df = df.dropna(how='all')\n",
|
821 |
+
"print(df)\n",
|
822 |
+
"<output>: A B C D E\n",
|
823 |
+
"0 1 1 1 1 1\n",
|
824 |
+
"1 2 2 2 2 2\n",
|
825 |
+
"2 3 3 3 3 3\n",
|
826 |
+
"4 5 5 5 5 5\n",
|
827 |
+
"<output>: import pand\n"
|
828 |
+
]
|
829 |
+
}
|
830 |
+
],
|
831 |
+
"source": [
|
832 |
+
"prompt = \"How to remove null valued rows?\"\n",
|
833 |
+
"print(generate_response(prompt))"
|
834 |
+
]
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"cell_type": "code",
|
838 |
+
"execution_count": null,
|
839 |
+
"id": "5ca085f6-30fc-4e50-a436-673f3baa75af",
|
840 |
+
"metadata": {},
|
841 |
+
"outputs": [],
|
842 |
+
"source": []
|
843 |
+
}
|
844 |
+
],
|
845 |
+
"metadata": {
|
846 |
+
"kernelspec": {
|
847 |
+
"display_name": "Python 3 (ipykernel)",
|
848 |
+
"language": "python",
|
849 |
+
"name": "python3"
|
850 |
+
},
|
851 |
+
"language_info": {
|
852 |
+
"codemirror_mode": {
|
853 |
+
"name": "ipython",
|
854 |
+
"version": 3
|
855 |
+
},
|
856 |
+
"file_extension": ".py",
|
857 |
+
"mimetype": "text/x-python",
|
858 |
+
"name": "python",
|
859 |
+
"nbconvert_exporter": "python",
|
860 |
+
"pygments_lexer": "ipython3",
|
861 |
+
"version": "3.10.13"
|
862 |
+
}
|
863 |
+
},
|
864 |
+
"nbformat": 4,
|
865 |
+
"nbformat_minor": 5
|
866 |
+
}
|
ds1000-test-cleaned.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ds1000-train-cleaned.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
experiments/runs/Dec11_06-38-12_114d9a2e28a3/1702276693.5141723/events.out.tfevents.1702276693.114d9a2e28a3.6724.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f25e1807afb8c8257bbc7fff824e498df2917d3fbdfabce9311e29dbfd64ee4c
|
3 |
+
size 5900
|
experiments/runs/Dec11_06-38-12_114d9a2e28a3/events.out.tfevents.1702276693.114d9a2e28a3.6724.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eef523b5bf07e40277c221485f9b694b435700bf700f4ca2b72b91f038ac6441
|
3 |
+
size 4470
|
experiments/runs/Dec11_06-44-21_114d9a2e28a3/1702277061.7964196/events.out.tfevents.1702277061.114d9a2e28a3.9175.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c5cd2abb0dfdfd8ae2ef03e0800fb3b0cab4628d98832ac59083f3cca2cdaab
|
3 |
+
size 5900
|
experiments/runs/Dec11_06-44-21_114d9a2e28a3/events.out.tfevents.1702277061.114d9a2e28a3.9175.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b100927e05f3d0ef5550a60df85903496fa0bebf24ec51116d6dea4ccc9b78b
|
3 |
+
size 6625
|
experiments/runs/Dec11_06-47-03_114d9a2e28a3/1702277223.9722266/events.out.tfevents.1702277223.114d9a2e28a3.10257.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3d68e699976be729ef5e3439a979beeb843b9ca534f2669b7e7b10e84bdc8fe
|
3 |
+
size 5900
|
experiments/runs/Dec11_06-47-03_114d9a2e28a3/events.out.tfevents.1702277223.114d9a2e28a3.10257.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d63259dbe437e29c5dce266f395061f0037d1046552b861267b8208fb6bf426
|
3 |
+
size 74778
|
trained-model/adapter_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_model_name_or_path": "ise-uiuc/Magicoder-S-DS-6.7B",
|
3 |
+
"bias": "none",
|
4 |
+
"fan_in_fan_out": false,
|
5 |
+
"inference_mode": true,
|
6 |
+
"init_lora_weights": true,
|
7 |
+
"layers_pattern": null,
|
8 |
+
"layers_to_transform": null,
|
9 |
+
"lora_alpha": 32,
|
10 |
+
"lora_dropout": 0.05,
|
11 |
+
"modules_to_save": null,
|
12 |
+
"peft_type": "LORA",
|
13 |
+
"r": 16,
|
14 |
+
"revision": null,
|
15 |
+
"target_modules": [
|
16 |
+
"q_proj",
|
17 |
+
"v_proj"
|
18 |
+
],
|
19 |
+
"task_type": "CAUSAL_LM"
|
20 |
+
}
|
trained-model/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90c57b8002f6685aa7fcf0ea30c8cf2d1c37454e7dede5b034baf2ebd984c72a
|
3 |
+
size 33600906
|