shahukareem commited on
Commit
0d953a4
ยท
1 Parent(s): e2b74d1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -17
README.md CHANGED
@@ -24,7 +24,7 @@ model-index:
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
- value: 33.10
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Dhivehi
@@ -50,15 +50,15 @@ model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhive
50
  # Preprocessing the datasets.
51
  # We need to read the aduio files as arrays
52
  def speech_file_to_array_fn(batch):
53
- speech_array, sampling_rate = torchaudio.load(batch["path"])
54
- batch["speech"] = resampler(speech_array).squeeze().numpy()
55
- return batch
56
 
57
  test_dataset = test_dataset.map(speech_file_to_array_fn)
58
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
 
60
  with torch.no_grad():
61
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
 
63
  predicted_ids = torch.argmax(logits, dim=-1)
64
 
@@ -86,37 +86,37 @@ processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-5
86
  model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi")
87
  model.to("cuda")
88
 
89
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\โ€œ\%\โ€˜\โ€\๏ฟฝ\ุŒ\.\ุŸ\!\'\"\โ€“\โ€™]'
90
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
 
92
  # Preprocessing the datasets.
93
  # We need to read the aduio files as arrays
94
  def speech_file_to_array_fn(batch):
95
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
96
- speech_array, sampling_rate = torchaudio.load(batch["path"])
97
- batch["speech"] = resampler(speech_array).squeeze().numpy()
98
- return batch
99
 
100
  test_dataset = test_dataset.map(speech_file_to_array_fn)
101
 
102
  # Preprocessing the datasets.
103
  # We need to read the aduio files as arrays
104
  def evaluate(batch):
105
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
106
 
107
- with torch.no_grad():
108
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
109
 
110
- pred_ids = torch.argmax(logits, dim=-1)
111
- batch["pred_strings"] = processor.batch_decode(pred_ids)
112
- return batch
113
 
114
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
115
 
116
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
117
  ```
118
 
119
- **Test Result**: 33.10%
120
 
121
  ## Training
122
  The Common Voice `train` and `validation` datasets were used for training.
 
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
+ value: 32.85
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Dhivehi
 
50
  # Preprocessing the datasets.
51
  # We need to read the aduio files as arrays
52
  def speech_file_to_array_fn(batch):
53
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
54
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
55
+ \treturn batch
56
 
57
  test_dataset = test_dataset.map(speech_file_to_array_fn)
58
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
 
60
  with torch.no_grad():
61
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
 
63
  predicted_ids = torch.argmax(logits, dim=-1)
64
 
 
86
  model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi")
87
  model.to("cuda")
88
 
89
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\โ€œ\\%\\โ€˜\\โ€\\๏ฟฝ\\ุŒ\\.\\ุŸ\\!\\'\\"\\โ€“\\โ€™]'
90
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
 
92
  # Preprocessing the datasets.
93
  # We need to read the aduio files as arrays
94
  def speech_file_to_array_fn(batch):
95
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
96
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
97
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
98
+ \treturn batch
99
 
100
  test_dataset = test_dataset.map(speech_file_to_array_fn)
101
 
102
  # Preprocessing the datasets.
103
  # We need to read the aduio files as arrays
104
  def evaluate(batch):
105
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
106
 
107
+ \twith torch.no_grad():
108
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
109
 
110
+ \tpred_ids = torch.argmax(logits, dim=-1)
111
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
112
+ \treturn batch
113
 
114
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
115
 
116
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
117
  ```
118
 
119
+ **Test Result**: 32.85%
120
 
121
  ## Training
122
  The Common Voice `train` and `validation` datasets were used for training.