File size: 11,722 Bytes
466a23c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
tags:
- generated_from_trainer
model-index:
- name: chemical-bert-uncased-finetuned-cust-c2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# chemical-bert-uncased-finetuned-cust-c2

This model is a fine-tuned version of [shafin/chemical-bert-uncased-finetuned-cust](https://huggingface.co/shafin/chemical-bert-uncased-finetuned-cust) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5768

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.9422        | 1.0   | 63    | 1.6236          |
| 1.6662        | 2.0   | 126   | 1.5136          |
| 1.5299        | 3.0   | 189   | 1.4435          |
| 1.4542        | 4.0   | 252   | 1.2997          |
| 1.374         | 5.0   | 315   | 1.2431          |
| 1.2944        | 6.0   | 378   | 1.1990          |
| 1.2439        | 7.0   | 441   | 1.1733          |
| 1.2304        | 8.0   | 504   | 1.1494          |
| 1.1495        | 9.0   | 567   | 1.1410          |
| 1.1325        | 10.0  | 630   | 1.1208          |
| 1.0798        | 11.0  | 693   | 1.0691          |
| 1.074         | 12.0  | 756   | 1.0918          |
| 1.0422        | 13.0  | 819   | 1.0823          |
| 1.0124        | 14.0  | 882   | 1.0101          |
| 1.0172        | 15.0  | 945   | 0.9742          |
| 0.9821        | 16.0  | 1008  | 0.9740          |
| 0.9347        | 17.0  | 1071  | 0.9711          |
| 0.9193        | 18.0  | 1134  | 0.9291          |
| 0.9229        | 19.0  | 1197  | 0.9317          |
| 0.8751        | 20.0  | 1260  | 0.9331          |
| 0.8914        | 21.0  | 1323  | 0.9137          |
| 0.8686        | 22.0  | 1386  | 0.9209          |
| 0.8482        | 23.0  | 1449  | 0.8724          |
| 0.8201        | 24.0  | 1512  | 0.8512          |
| 0.8131        | 25.0  | 1575  | 0.8753          |
| 0.8123        | 26.0  | 1638  | 0.8651          |
| 0.8046        | 27.0  | 1701  | 0.8374          |
| 0.7668        | 28.0  | 1764  | 0.8981          |
| 0.7732        | 29.0  | 1827  | 0.8691          |
| 0.7567        | 30.0  | 1890  | 0.7845          |
| 0.7465        | 31.0  | 1953  | 0.8493          |
| 0.7451        | 32.0  | 2016  | 0.8270          |
| 0.7211        | 33.0  | 2079  | 0.8148          |
| 0.7006        | 34.0  | 2142  | 0.8163          |
| 0.7107        | 35.0  | 2205  | 0.7866          |
| 0.6889        | 36.0  | 2268  | 0.7712          |
| 0.674         | 37.0  | 2331  | 0.7762          |
| 0.6847        | 38.0  | 2394  | 0.7583          |
| 0.6639        | 39.0  | 2457  | 0.7800          |
| 0.6615        | 40.0  | 2520  | 0.8270          |
| 0.6566        | 41.0  | 2583  | 0.7851          |
| 0.6364        | 42.0  | 2646  | 0.7645          |
| 0.6261        | 43.0  | 2709  | 0.7044          |
| 0.6338        | 44.0  | 2772  | 0.7952          |
| 0.6315        | 45.0  | 2835  | 0.7439          |
| 0.6122        | 46.0  | 2898  | 0.7566          |
| 0.5941        | 47.0  | 2961  | 0.7124          |
| 0.6076        | 48.0  | 3024  | 0.7591          |
| 0.59          | 49.0  | 3087  | 0.7473          |
| 0.5838        | 50.0  | 3150  | 0.6961          |
| 0.5931        | 51.0  | 3213  | 0.7604          |
| 0.5847        | 52.0  | 3276  | 0.7260          |
| 0.5691        | 53.0  | 3339  | 0.7309          |
| 0.5778        | 54.0  | 3402  | 0.7200          |
| 0.5464        | 55.0  | 3465  | 0.7014          |
| 0.5592        | 56.0  | 3528  | 0.7567          |
| 0.555         | 57.0  | 3591  | 0.7062          |
| 0.5436        | 58.0  | 3654  | 0.7284          |
| 0.5328        | 59.0  | 3717  | 0.6896          |
| 0.5397        | 60.0  | 3780  | 0.7041          |
| 0.5263        | 61.0  | 3843  | 0.7029          |
| 0.5181        | 62.0  | 3906  | 0.7223          |
| 0.5166        | 63.0  | 3969  | 0.7043          |
| 0.5066        | 64.0  | 4032  | 0.6723          |
| 0.5115        | 65.0  | 4095  | 0.6871          |
| 0.4956        | 66.0  | 4158  | 0.6818          |
| 0.5006        | 67.0  | 4221  | 0.7075          |
| 0.4837        | 68.0  | 4284  | 0.6686          |
| 0.4874        | 69.0  | 4347  | 0.6943          |
| 0.4808        | 70.0  | 4410  | 0.6584          |
| 0.4775        | 71.0  | 4473  | 0.6954          |
| 0.4776        | 72.0  | 4536  | 0.6741          |
| 0.4773        | 73.0  | 4599  | 0.6591          |
| 0.4699        | 74.0  | 4662  | 0.7000          |
| 0.4779        | 75.0  | 4725  | 0.6829          |
| 0.4543        | 76.0  | 4788  | 0.6839          |
| 0.4641        | 77.0  | 4851  | 0.6444          |
| 0.4495        | 78.0  | 4914  | 0.6604          |
| 0.4489        | 79.0  | 4977  | 0.6713          |
| 0.4394        | 80.0  | 5040  | 0.6905          |
| 0.4461        | 81.0  | 5103  | 0.6879          |
| 0.4386        | 82.0  | 5166  | 0.6458          |
| 0.4529        | 83.0  | 5229  | 0.6306          |
| 0.4261        | 84.0  | 5292  | 0.6291          |
| 0.4306        | 85.0  | 5355  | 0.6518          |
| 0.4428        | 86.0  | 5418  | 0.6456          |
| 0.4336        | 87.0  | 5481  | 0.6686          |
| 0.4105        | 88.0  | 5544  | 0.6735          |
| 0.4281        | 89.0  | 5607  | 0.6645          |
| 0.4172        | 90.0  | 5670  | 0.6527          |
| 0.4037        | 91.0  | 5733  | 0.6004          |
| 0.4137        | 92.0  | 5796  | 0.6643          |
| 0.4135        | 93.0  | 5859  | 0.6783          |
| 0.3988        | 94.0  | 5922  | 0.6687          |
| 0.4172        | 95.0  | 5985  | 0.6486          |
| 0.3819        | 96.0  | 6048  | 0.6466          |
| 0.3938        | 97.0  | 6111  | 0.5946          |
| 0.4053        | 98.0  | 6174  | 0.6146          |
| 0.3988        | 99.0  | 6237  | 0.6166          |
| 0.3798        | 100.0 | 6300  | 0.6383          |
| 0.386         | 101.0 | 6363  | 0.6631          |
| 0.3962        | 102.0 | 6426  | 0.6298          |
| 0.399         | 103.0 | 6489  | 0.6251          |
| 0.3851        | 104.0 | 6552  | 0.6339          |
| 0.3767        | 105.0 | 6615  | 0.6610          |
| 0.3756        | 106.0 | 6678  | 0.6292          |
| 0.375         | 107.0 | 6741  | 0.6201          |
| 0.3648        | 108.0 | 6804  | 0.6384          |
| 0.3664        | 109.0 | 6867  | 0.6046          |
| 0.3679        | 110.0 | 6930  | 0.6169          |
| 0.368         | 111.0 | 6993  | 0.6450          |
| 0.3605        | 112.0 | 7056  | 0.6518          |
| 0.3675        | 113.0 | 7119  | 0.6082          |
| 0.3559        | 114.0 | 7182  | 0.6232          |
| 0.3563        | 115.0 | 7245  | 0.6438          |
| 0.3664        | 116.0 | 7308  | 0.6381          |
| 0.3662        | 117.0 | 7371  | 0.6412          |
| 0.3596        | 118.0 | 7434  | 0.6631          |
| 0.3447        | 119.0 | 7497  | 0.6065          |
| 0.3421        | 120.0 | 7560  | 0.6072          |
| 0.347         | 121.0 | 7623  | 0.5787          |
| 0.3474        | 122.0 | 7686  | 0.6343          |
| 0.3426        | 123.0 | 7749  | 0.6114          |
| 0.3418        | 124.0 | 7812  | 0.6084          |
| 0.3485        | 125.0 | 7875  | 0.6188          |
| 0.3411        | 126.0 | 7938  | 0.6112          |
| 0.3371        | 127.0 | 8001  | 0.5991          |
| 0.3353        | 128.0 | 8064  | 0.5861          |
| 0.3318        | 129.0 | 8127  | 0.6419          |
| 0.3417        | 130.0 | 8190  | 0.6272          |
| 0.3235        | 131.0 | 8253  | 0.6293          |
| 0.3363        | 132.0 | 8316  | 0.6017          |
| 0.3358        | 133.0 | 8379  | 0.5816          |
| 0.3273        | 134.0 | 8442  | 0.6384          |
| 0.3277        | 135.0 | 8505  | 0.6063          |
| 0.3336        | 136.0 | 8568  | 0.6482          |
| 0.3205        | 137.0 | 8631  | 0.6428          |
| 0.3136        | 138.0 | 8694  | 0.6322          |
| 0.3212        | 139.0 | 8757  | 0.6218          |
| 0.3275        | 140.0 | 8820  | 0.6328          |
| 0.3227        | 141.0 | 8883  | 0.6406          |
| 0.3166        | 142.0 | 8946  | 0.6317          |
| 0.3111        | 143.0 | 9009  | 0.6308          |
| 0.309         | 144.0 | 9072  | 0.5972          |
| 0.316         | 145.0 | 9135  | 0.6229          |
| 0.3163        | 146.0 | 9198  | 0.6244          |
| 0.3125        | 147.0 | 9261  | 0.6195          |
| 0.3164        | 148.0 | 9324  | 0.5676          |
| 0.3151        | 149.0 | 9387  | 0.6225          |
| 0.3014        | 150.0 | 9450  | 0.6044          |
| 0.3106        | 151.0 | 9513  | 0.6262          |
| 0.3065        | 152.0 | 9576  | 0.5927          |
| 0.2982        | 153.0 | 9639  | 0.6402          |
| 0.3054        | 154.0 | 9702  | 0.6329          |
| 0.3172        | 155.0 | 9765  | 0.6227          |
| 0.3005        | 156.0 | 9828  | 0.5882          |
| 0.3174        | 157.0 | 9891  | 0.6049          |
| 0.3023        | 158.0 | 9954  | 0.5990          |
| 0.3013        | 159.0 | 10017 | 0.5909          |
| 0.3044        | 160.0 | 10080 | 0.6317          |
| 0.298         | 161.0 | 10143 | 0.6237          |
| 0.2984        | 162.0 | 10206 | 0.6074          |
| 0.3075        | 163.0 | 10269 | 0.5746          |
| 0.2921        | 164.0 | 10332 | 0.5633          |
| 0.3014        | 165.0 | 10395 | 0.6034          |
| 0.297         | 166.0 | 10458 | 0.6420          |
| 0.2936        | 167.0 | 10521 | 0.6206          |
| 0.2946        | 168.0 | 10584 | 0.5869          |
| 0.2923        | 169.0 | 10647 | 0.5898          |
| 0.2936        | 170.0 | 10710 | 0.5810          |
| 0.2968        | 171.0 | 10773 | 0.5888          |
| 0.2863        | 172.0 | 10836 | 0.6124          |
| 0.3038        | 173.0 | 10899 | 0.5823          |
| 0.2845        | 174.0 | 10962 | 0.6187          |
| 0.2847        | 175.0 | 11025 | 0.5749          |
| 0.2984        | 176.0 | 11088 | 0.5900          |
| 0.297         | 177.0 | 11151 | 0.6243          |
| 0.2914        | 178.0 | 11214 | 0.5839          |
| 0.2904        | 179.0 | 11277 | 0.6085          |
| 0.2946        | 180.0 | 11340 | 0.6257          |
| 0.2934        | 181.0 | 11403 | 0.5918          |
| 0.2858        | 182.0 | 11466 | 0.6072          |
| 0.2912        | 183.0 | 11529 | 0.6394          |
| 0.2771        | 184.0 | 11592 | 0.5962          |
| 0.289         | 185.0 | 11655 | 0.6039          |
| 0.2801        | 186.0 | 11718 | 0.5819          |
| 0.2875        | 187.0 | 11781 | 0.6264          |
| 0.2875        | 188.0 | 11844 | 0.6156          |
| 0.2853        | 189.0 | 11907 | 0.5968          |
| 0.2874        | 190.0 | 11970 | 0.6028          |
| 0.2844        | 191.0 | 12033 | 0.5767          |
| 0.2855        | 192.0 | 12096 | 0.6124          |
| 0.2879        | 193.0 | 12159 | 0.5856          |
| 0.2801        | 194.0 | 12222 | 0.6163          |
| 0.2902        | 195.0 | 12285 | 0.5939          |
| 0.2879        | 196.0 | 12348 | 0.5780          |
| 0.2946        | 197.0 | 12411 | 0.6052          |
| 0.2801        | 198.0 | 12474 | 0.6251          |
| 0.287         | 199.0 | 12537 | 0.5839          |
| 0.2864        | 200.0 | 12600 | 0.5768          |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2