shadowlilac
commited on
Commit
·
7cc2be8
1
Parent(s):
290eda0
Release
Browse files- config.json +32 -0
- inference.ipynb +148 -0
- preprocessor_config.json +22 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "shadowlilac/anime-image-quality-v2",
|
3 |
+
"architectures": [
|
4 |
+
"ViTForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"encoder_stride": 16,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 1536,
|
11 |
+
"id2label": {
|
12 |
+
"0": "hq",
|
13 |
+
"1": "lq"
|
14 |
+
},
|
15 |
+
"image_size": 1024,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 4192,
|
18 |
+
"label2id": {
|
19 |
+
"hq": "0",
|
20 |
+
"lq": "1"
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"model_type": "vit",
|
24 |
+
"num_attention_heads": 16,
|
25 |
+
"num_channels": 3,
|
26 |
+
"num_hidden_layers": 48,
|
27 |
+
"patch_size": 64,
|
28 |
+
"problem_type": "single_label_classification",
|
29 |
+
"qkv_bias": true,
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.33.2"
|
32 |
+
}
|
inference.ipynb
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"collapsed_sections": [
|
8 |
+
"3xnrF3UB6ev0"
|
9 |
+
],
|
10 |
+
"gpuType": "T4"
|
11 |
+
},
|
12 |
+
"kernelspec": {
|
13 |
+
"name": "python3",
|
14 |
+
"display_name": "Python 3"
|
15 |
+
},
|
16 |
+
"language_info": {
|
17 |
+
"name": "python"
|
18 |
+
},
|
19 |
+
"accelerator": "GPU"
|
20 |
+
},
|
21 |
+
"cells": [
|
22 |
+
{
|
23 |
+
"cell_type": "markdown",
|
24 |
+
"source": [
|
25 |
+
"# Model Inference"
|
26 |
+
],
|
27 |
+
"metadata": {
|
28 |
+
"id": "33C47swS80_1"
|
29 |
+
}
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"source": [
|
34 |
+
"#@title Install Dependencies\n",
|
35 |
+
"!pip install transformers -q"
|
36 |
+
],
|
37 |
+
"metadata": {
|
38 |
+
"cellView": "form",
|
39 |
+
"id": "noaoheUjvGbd"
|
40 |
+
},
|
41 |
+
"execution_count": 1,
|
42 |
+
"outputs": []
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": null,
|
47 |
+
"metadata": {
|
48 |
+
"cellView": "form",
|
49 |
+
"id": "NZLqjuWEtCDy"
|
50 |
+
},
|
51 |
+
"outputs": [],
|
52 |
+
"source": [
|
53 |
+
"#@title Imports\n",
|
54 |
+
"import os\n",
|
55 |
+
"from transformers import pipeline\n",
|
56 |
+
"import shutil\n",
|
57 |
+
"from PIL import Image\n",
|
58 |
+
"import torch\n",
|
59 |
+
"pipe = pipeline(\"image-classification\", model=\"shadowlilac/aesthetic-shadow\", device=0)"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"source": [
|
65 |
+
"#@title Inference\n",
|
66 |
+
"\n",
|
67 |
+
"# Input image file\n",
|
68 |
+
"single_image_file = \"image_1.png\" #@param {type:\"string\"}\n",
|
69 |
+
"\n",
|
70 |
+
"result = pipe(images=[single_image_file])\n",
|
71 |
+
"\n",
|
72 |
+
"prediction_single = result[0]\n",
|
73 |
+
"print(\"Prediction: \" + str(round([p for p in prediction_single if p['label'] == 'hq'][0]['score'], 2)) + \"% High Quality\")\n",
|
74 |
+
"Image.open(single_image_file)"
|
75 |
+
],
|
76 |
+
"metadata": {
|
77 |
+
"cellView": "form",
|
78 |
+
"id": "r1R-L2r-0uo2"
|
79 |
+
},
|
80 |
+
"execution_count": null,
|
81 |
+
"outputs": []
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "markdown",
|
85 |
+
"source": [
|
86 |
+
"# Batch Mode"
|
87 |
+
],
|
88 |
+
"metadata": {
|
89 |
+
"id": "3xnrF3UB6ev0"
|
90 |
+
}
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"source": [
|
95 |
+
"#@title Batch parameters\n",
|
96 |
+
"# Define the paths for the input folder and output folders\n",
|
97 |
+
"input_folder = \"input_folder\" #@param {type:\"string\"}\n",
|
98 |
+
"output_folder_hq = \"output_hq_folder\" #@param {type:\"string\"}\n",
|
99 |
+
"output_folder_lq = \"output_lq_folder\" #@param {type:\"string\"}\n",
|
100 |
+
"# Threshhold\n",
|
101 |
+
"batch_hq_threshold = 0.5 #@param {type:\"number\"}\n",
|
102 |
+
"# Define the batch size\n",
|
103 |
+
"batch_size = 8 #@param {type:\"number\"}"
|
104 |
+
],
|
105 |
+
"metadata": {
|
106 |
+
"cellView": "form",
|
107 |
+
"id": "VlPgrJf4wpHo"
|
108 |
+
},
|
109 |
+
"execution_count": 4,
|
110 |
+
"outputs": []
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"source": [
|
115 |
+
"#@title Execute Batch Job\n",
|
116 |
+
"\n",
|
117 |
+
"# List all image files in the input folder\n",
|
118 |
+
"image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]\n",
|
119 |
+
"\n",
|
120 |
+
"# Process images in batches\n",
|
121 |
+
"for i in range(0, len(image_files), batch_size):\n",
|
122 |
+
" batch = image_files[i:i + batch_size]\n",
|
123 |
+
"\n",
|
124 |
+
" # Perform classification for the batch\n",
|
125 |
+
" results = pipe(images=batch)\n",
|
126 |
+
"\n",
|
127 |
+
" for idx, result in enumerate(results):\n",
|
128 |
+
" # Extract the prediction scores and labels\n",
|
129 |
+
" predictions = result\n",
|
130 |
+
" hq_score = [p for p in predictions if p['label'] == 'hq'][0]['score']\n",
|
131 |
+
"\n",
|
132 |
+
" # Determine the destination folder based on the prediction and threshold\n",
|
133 |
+
" destination_folder = output_folder_hq if hq_score >= batch_hq_threshold else output_folder_lq\n",
|
134 |
+
"\n",
|
135 |
+
" # Copy the image to the appropriate folder\n",
|
136 |
+
" shutil.copy(batch[idx], os.path.join(destination_folder, os.path.basename(batch[idx])))\n",
|
137 |
+
"\n",
|
138 |
+
"print(\"Classification and sorting complete.\")"
|
139 |
+
],
|
140 |
+
"metadata": {
|
141 |
+
"cellView": "form",
|
142 |
+
"id": "RG01mcYf4DvK"
|
143 |
+
},
|
144 |
+
"execution_count": null,
|
145 |
+
"outputs": []
|
146 |
+
}
|
147 |
+
]
|
148 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_rescale": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"image_mean": [
|
6 |
+
0.5,
|
7 |
+
0.5,
|
8 |
+
0.5
|
9 |
+
],
|
10 |
+
"image_processor_type": "ViTFeatureExtractor",
|
11 |
+
"image_std": [
|
12 |
+
0.5,
|
13 |
+
0.5,
|
14 |
+
0.5
|
15 |
+
],
|
16 |
+
"resample": 2,
|
17 |
+
"rescale_factor": 0.00392156862745098,
|
18 |
+
"size": {
|
19 |
+
"height": 1024,
|
20 |
+
"width": 1024
|
21 |
+
}
|
22 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7eac1cb6aa06d1a82fa162e124bfbcd6aaaa47dcfbcb8d1a628618e3c1d6f581
|
3 |
+
size 4365309073
|