sgugger commited on
Commit
bb89bad
·
unverified ·
1 Parent(s): 773581a

Upload model and tool

Browse files
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "custom_pipelines": {
8
+ "pair-classification": {
9
+ "impl": "pair_classification.PairClassificationPipeline",
10
+ "pt": [
11
+ "AutoModelForSequenceClassification"
12
+ ],
13
+ "tf": []
14
+ }
15
+ },
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.1,
18
+ "hidden_size": 32,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 37,
21
+ "layer_norm_eps": 1e-12,
22
+ "max_position_embeddings": 512,
23
+ "model_type": "bert",
24
+ "num_attention_heads": 4,
25
+ "num_hidden_layers": 5,
26
+ "pad_token_id": 0,
27
+ "position_embedding_type": "absolute",
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.29.0.dev0",
30
+ "type_vocab_size": 2,
31
+ "use_cache": true,
32
+ "vocab_size": 99
33
+ }
pair_classification.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from transformers import Pipeline
4
+
5
+
6
+ def softmax(outputs):
7
+ maxes = np.max(outputs, axis=-1, keepdims=True)
8
+ shifted_exp = np.exp(outputs - maxes)
9
+ return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
10
+
11
+
12
+ class PairClassificationPipeline(Pipeline):
13
+ def _sanitize_parameters(self, **kwargs):
14
+ preprocess_kwargs = {}
15
+ if "second_text" in kwargs:
16
+ preprocess_kwargs["second_text"] = kwargs["second_text"]
17
+ return preprocess_kwargs, {}, {}
18
+
19
+ def preprocess(self, text, second_text=None):
20
+ return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)
21
+
22
+ def _forward(self, model_inputs):
23
+ return self.model(**model_inputs)
24
+
25
+ def postprocess(self, model_outputs):
26
+ logits = model_outputs.logits[0].numpy()
27
+ probabilities = softmax(logits)
28
+
29
+ best_class = np.argmax(probabilities)
30
+ label = self.model.config.id2label[best_class]
31
+ score = probabilities[best_class].item()
32
+ logits = logits.tolist()
33
+ return {"label": label, "score": score, "logits": logits}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:882ec9af8732f10b0b2a63bcff2d0b6d245e542dbf9f89143322149fbfd2562e
3
+ size 251775
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 1000000000000000019884624838656,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ [UNK]
2
+ [CLS]
3
+ [SEP]
4
+ [PAD]
5
+ [MASK]
6
+ I
7
+ love
8
+ hate
9
+ you