File size: 4,223 Bytes
ee06492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Support for PyTorch mps mode (https://pytorch.org/docs/stable/notes/mps.html)
import os

os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import dataclasses
import shutil
import wandb
import yaml

from dataclasses import dataclass
from torch.utils.tensorboard.writer import SummaryWriter
from typing import Any, Dict, Optional, Sequence

from shared.callbacks.eval_callback import EvalCallback
from runner.config import Config, EnvHyperparams, RunArgs
from runner.env import make_env, make_eval_env
from runner.running_utils import (
    ALGOS,
    load_hyperparams,
    set_seeds,
    get_device,
    make_policy,
    plot_eval_callback,
    hparam_dict,
)
from shared.stats import EpisodesStats


@dataclass
class TrainArgs(RunArgs):
    wandb_project_name: Optional[str] = None
    wandb_entity: Optional[str] = None
    wandb_tags: Sequence[str] = dataclasses.field(default_factory=list)


def train(args: TrainArgs):
    print(args)
    hyperparams = load_hyperparams(args.algo, args.env, os.getcwd())
    print(hyperparams)
    config = Config(args, hyperparams, os.getcwd())

    wandb_enabled = args.wandb_project_name
    if wandb_enabled:
        wandb.tensorboard.patch(
            root_logdir=config.tensorboard_summary_path, pytorch=True
        )
        wandb.init(
            project=args.wandb_project_name,
            entity=args.wandb_entity,
            config=hyperparams,  # type: ignore
            name=config.run_name,
            monitor_gym=True,
            save_code=True,
            tags=args.wandb_tags,
        )
        wandb.config.update(args)

    tb_writer = SummaryWriter(config.tensorboard_summary_path)

    set_seeds(args.seed, args.use_deterministic_algorithms)

    env = make_env(
        config, EnvHyperparams(**config.env_hyperparams), tb_writer=tb_writer
    )
    device = get_device(config.device, env)
    policy = make_policy(args.algo, env, device, **config.policy_hyperparams)
    algo = ALGOS[args.algo](policy, env, device, tb_writer, **config.algo_hyperparams)

    eval_env = make_eval_env(config, EnvHyperparams(**config.env_hyperparams))
    record_best_videos = config.eval_params.get("record_best_videos", True)
    callback = EvalCallback(
        policy,
        eval_env,
        tb_writer,
        best_model_path=config.model_dir_path(best=True),
        **config.eval_params,
        video_env=make_eval_env(
            config, EnvHyperparams(**config.env_hyperparams), override_n_envs=1
        )
        if record_best_videos
        else None,
        best_video_dir=config.best_videos_dir,
    )
    algo.learn(config.n_timesteps, callback=callback)

    policy.save(config.model_dir_path(best=False))

    eval_stats = callback.evaluate(n_episodes=10, print_returns=True)

    plot_eval_callback(callback, tb_writer, config.run_name)

    log_dict: Dict[str, Any] = {
        "eval": eval_stats._asdict(),
    }
    if callback.best:
        log_dict["best_eval"] = callback.best._asdict()
    log_dict.update(hyperparams)
    log_dict.update(vars(args))
    with open(config.logs_path, "a") as f:
        yaml.dump({config.run_name: log_dict}, f)

    best_eval_stats: EpisodesStats = callback.best  # type: ignore
    tb_writer.add_hparams(
        hparam_dict(hyperparams, vars(args)),
        {
            "hparam/best_mean": best_eval_stats.score.mean,
            "hparam/best_result": best_eval_stats.score.mean
            - best_eval_stats.score.std,
            "hparam/last_mean": eval_stats.score.mean,
            "hparam/last_result": eval_stats.score.mean - eval_stats.score.std,
        },
        None,
        config.run_name,
    )

    tb_writer.close()

    if wandb_enabled:
        wandb.run.summary["num_parameters"] = policy.num_parameters()
        wandb.run.summary[
            "num_trainable_parameters"
        ] = policy.num_trainable_parameters()
        shutil.make_archive(
            os.path.join(wandb.run.dir, config.model_dir_name()),
            "zip",
            config.model_dir_path(),
        )
        shutil.make_archive(
            os.path.join(wandb.run.dir, config.model_dir_name(best=True)),
            "zip",
            config.model_dir_path(best=True),
        )
        wandb.finish()