File size: 6,624 Bytes
5b9b09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F

from abc import ABC, abstractmethod
from gym.spaces import Box, Discrete
from stable_baselines3.common.preprocessing import get_flattened_obs_dim
from typing import Dict, Optional, Type

from shared.module.module import layer_init


class CnnFeatureExtractor(nn.Module, ABC):
    @abstractmethod
    def __init__(
        self,
        in_channels: int,
        activation: Type[nn.Module] = nn.ReLU,
        init_layers_orthogonal: Optional[bool] = None,
    ) -> None:
        super().__init__()


class NatureCnn(CnnFeatureExtractor):
    """
    CNN from DQN Nature paper: Mnih, Volodymyr, et al.
    "Human-level control through deep reinforcement learning."
    Nature 518.7540 (2015): 529-533.
    """

    def __init__(
        self,
        in_channels: int,
        activation: Type[nn.Module] = nn.ReLU,
        init_layers_orthogonal: Optional[bool] = None,
    ) -> None:
        if init_layers_orthogonal is None:
            init_layers_orthogonal = True
        super().__init__(in_channels, activation, init_layers_orthogonal)
        self.cnn = nn.Sequential(
            layer_init(
                nn.Conv2d(in_channels, 32, kernel_size=8, stride=4),
                init_layers_orthogonal,
            ),
            activation(),
            layer_init(
                nn.Conv2d(32, 64, kernel_size=4, stride=2),
                init_layers_orthogonal,
            ),
            activation(),
            layer_init(
                nn.Conv2d(64, 64, kernel_size=3, stride=1),
                init_layers_orthogonal,
            ),
            activation(),
            nn.Flatten(),
        )

    def forward(self, obs: torch.Tensor) -> torch.Tensor:
        return self.cnn(obs)


class ResidualBlock(nn.Module):
    def __init__(
        self,
        channels: int,
        activation: Type[nn.Module] = nn.ReLU,
        init_layers_orthogonal: bool = False,
    ) -> None:
        super().__init__()
        self.residual = nn.Sequential(
            activation(),
            layer_init(
                nn.Conv2d(channels, channels, 3, padding=1), init_layers_orthogonal
            ),
            activation(),
            layer_init(
                nn.Conv2d(channels, channels, 3, padding=1), init_layers_orthogonal
            ),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x + self.residual(x)


class ConvSequence(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        activation: Type[nn.Module] = nn.ReLU,
        init_layers_orthogonal: bool = False,
    ) -> None:
        super().__init__()
        self.seq = nn.Sequential(
            layer_init(
                nn.Conv2d(in_channels, out_channels, 3, padding=1),
                init_layers_orthogonal,
            ),
            nn.MaxPool2d(3, stride=2, padding=1),
            ResidualBlock(out_channels, activation, init_layers_orthogonal),
            ResidualBlock(out_channels, activation, init_layers_orthogonal),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.seq(x)


class ImpalaCnn(CnnFeatureExtractor):
    """
    IMPALA-style CNN architecture
    """

    def __init__(
        self,
        in_channels: int,
        activation: Type[nn.Module] = nn.ReLU,
        init_layers_orthogonal: Optional[bool] = None,
    ) -> None:
        if init_layers_orthogonal is None:
            init_layers_orthogonal = False
        super().__init__(in_channels, activation, init_layers_orthogonal)
        sequences = []
        for out_channels in [16, 32, 32]:
            sequences.append(
                ConvSequence(
                    in_channels, out_channels, activation, init_layers_orthogonal
                )
            )
            in_channels = out_channels
        sequences.extend(
            [
                activation(),
                nn.Flatten(),
            ]
        )
        self.seq = nn.Sequential(*sequences)

    def forward(self, obs: torch.Tensor) -> torch.Tensor:
        return self.seq(obs)


CNN_EXTRACTORS_BY_STYLE: Dict[str, Type[CnnFeatureExtractor]] = {
    "nature": NatureCnn,
    "impala": ImpalaCnn,
}


class FeatureExtractor(nn.Module):
    def __init__(
        self,
        obs_space: gym.Space,
        activation: Type[nn.Module],
        init_layers_orthogonal: bool = False,
        cnn_feature_dim: int = 512,
        cnn_style: str = "nature",
        cnn_layers_init_orthogonal: Optional[bool] = None,
    ) -> None:
        super().__init__()
        if isinstance(obs_space, Box):
            # Conv2D: (channels, height, width)
            if len(obs_space.shape) == 3:
                cnn = CNN_EXTRACTORS_BY_STYLE[cnn_style](
                    obs_space.shape[0],
                    activation,
                    init_layers_orthogonal=cnn_layers_init_orthogonal,
                )

                def preprocess(obs: torch.Tensor) -> torch.Tensor:
                    if len(obs.shape) == 3:
                        obs = obs.unsqueeze(0)
                    return obs.float() / 255.0

                with torch.no_grad():
                    cnn_out = cnn(preprocess(torch.as_tensor(obs_space.sample())))
                self.preprocess = preprocess
                self.feature_extractor = nn.Sequential(
                    cnn,
                    layer_init(
                        nn.Linear(cnn_out.shape[1], cnn_feature_dim),
                        init_layers_orthogonal,
                    ),
                    activation(),
                )
                self.out_dim = cnn_feature_dim
            elif len(obs_space.shape) == 1:

                def preprocess(obs: torch.Tensor) -> torch.Tensor:
                    if len(obs.shape) == 1:
                        obs = obs.unsqueeze(0)
                    return obs.float()

                self.preprocess = preprocess
                self.feature_extractor = nn.Flatten()
                self.out_dim = get_flattened_obs_dim(obs_space)
            else:
                raise ValueError(f"Unsupported observation space: {obs_space}")
        elif isinstance(obs_space, Discrete):
            self.preprocess = lambda x: F.one_hot(x, obs_space.n).float()
            self.feature_extractor = nn.Flatten()
            self.out_dim = obs_space.n
        else:
            raise NotImplementedError

    def forward(self, obs: torch.Tensor) -> torch.Tensor:
        if self.preprocess:
            obs = self.preprocess(obs)
        return self.feature_extractor(obs)