File size: 8,772 Bytes
5b9b09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import gym
import numpy as np
import os

from gym.wrappers.resize_observation import ResizeObservation
from gym.wrappers.gray_scale_observation import GrayScaleObservation
from gym.wrappers.frame_stack import FrameStack
from procgen.env import ProcgenEnv
from stable_baselines3.common.atari_wrappers import (
    MaxAndSkipEnv,
    NoopResetEnv,
)
from stable_baselines3.common.vec_env.base_vec_env import VecEnv
from stable_baselines3.common.vec_env.dummy_vec_env import DummyVecEnv
from stable_baselines3.common.vec_env.subproc_vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize
from torch.utils.tensorboard.writer import SummaryWriter
from typing import Callable, Optional, Union

from runner.config import Config, EnvHyperparams
from shared.policy.policy import VEC_NORMALIZE_FILENAME
from wrappers.atari_wrappers import EpisodicLifeEnv, FireOnLifeStarttEnv, ClipRewardEnv
from wrappers.episode_record_video import EpisodeRecordVideo
from wrappers.episode_stats_writer import EpisodeStatsWriter
from wrappers.get_rgb_observation import GetRgbObservation
from wrappers.initial_step_truncate_wrapper import InitialStepTruncateWrapper
from wrappers.is_vector_env import IsVectorEnv
from wrappers.noop_env_seed import NoopEnvSeed
from wrappers.transpose_image_observation import TransposeImageObservation
from wrappers.video_compat_wrapper import VideoCompatWrapper

GeneralVecEnv = Union[VecEnv, gym.vector.VectorEnv, gym.Wrapper]


def make_env(
    config: Config,
    hparams: EnvHyperparams,
    training: bool = True,
    render: bool = False,
    normalize_load_path: Optional[str] = None,
    tb_writer: Optional[SummaryWriter] = None,
) -> GeneralVecEnv:
    if hparams.is_procgen:
        return _make_procgen_env(
            config,
            hparams,
            training=training,
            render=render,
            normalize_load_path=normalize_load_path,
            tb_writer=tb_writer,
        )
    else:
        return _make_vec_env(
            config,
            hparams,
            training=training,
            render=render,
            normalize_load_path=normalize_load_path,
            tb_writer=tb_writer,
        )


def make_eval_env(
    config: Config,
    hparams: EnvHyperparams,
    override_n_envs: Optional[int] = None,
    **kwargs
) -> GeneralVecEnv:
    kwargs = kwargs.copy()
    kwargs["training"] = False
    if override_n_envs is not None:
        hparams_kwargs = hparams._asdict()
        hparams_kwargs["n_envs"] = override_n_envs
        if override_n_envs == 1:
            hparams_kwargs["vec_env_class"] = "dummy"
        hparams = EnvHyperparams(**hparams_kwargs)
    return make_env(config, hparams, **kwargs)


def _make_vec_env(
    config: Config,
    hparams: EnvHyperparams,
    training: bool = True,
    render: bool = False,
    normalize_load_path: Optional[str] = None,
    tb_writer: Optional[SummaryWriter] = None,
) -> GeneralVecEnv:
    (
        _,
        n_envs,
        frame_stack,
        make_kwargs,
        no_reward_timeout_steps,
        no_reward_fire_steps,
        vec_env_class,
        normalize,
        normalize_kwargs,
        rolling_length,
        train_record_video,
        video_step_interval,
        initial_steps_to_truncate,
    ) = hparams

    if "BulletEnv" in config.env_id:
        import pybullet_envs

    spec = gym.spec(config.env_id)
    seed = config.seed(training=training)

    def make(idx: int) -> Callable[[], gym.Env]:
        env_kwargs = make_kwargs.copy() if make_kwargs is not None else {}
        if "BulletEnv" in config.env_id and render:
            env_kwargs["render"] = True
        if "CarRacing" in config.env_id:
            env_kwargs["verbose"] = 0
        if "procgen" in config.env_id:
            if not render:
                env_kwargs["render_mode"] = "rgb_array"

        def _make() -> gym.Env:
            env = gym.make(config.env_id, **env_kwargs)
            env = gym.wrappers.RecordEpisodeStatistics(env)
            env = VideoCompatWrapper(env)
            if training and train_record_video and idx == 0:
                env = EpisodeRecordVideo(
                    env,
                    config.video_prefix,
                    step_increment=n_envs,
                    video_step_interval=int(video_step_interval),
                )
            if training and initial_steps_to_truncate:
                env = InitialStepTruncateWrapper(
                    env, idx * initial_steps_to_truncate // n_envs
                )
            if "AtariEnv" in spec.entry_point:  # type: ignore
                env = NoopResetEnv(env, noop_max=30)
                env = MaxAndSkipEnv(env, skip=4)
                env = EpisodicLifeEnv(env, training=training)
                action_meanings = env.unwrapped.get_action_meanings()
                if "FIRE" in action_meanings:  # type: ignore
                    env = FireOnLifeStarttEnv(env, action_meanings.index("FIRE"))
                env = ClipRewardEnv(env, training=training)
                env = ResizeObservation(env, (84, 84))
                env = GrayScaleObservation(env, keep_dim=False)
                env = FrameStack(env, frame_stack)
            elif "CarRacing" in config.env_id:
                env = ResizeObservation(env, (64, 64))
                env = GrayScaleObservation(env, keep_dim=False)
                env = FrameStack(env, frame_stack)
            elif "procgen" in config.env_id:
                # env = GrayScaleObservation(env, keep_dim=False)
                env = NoopEnvSeed(env)
                env = TransposeImageObservation(env)
                if frame_stack > 1:
                    env = FrameStack(env, frame_stack)

            if no_reward_timeout_steps:
                from wrappers.no_reward_timeout import NoRewardTimeout

                env = NoRewardTimeout(
                    env, no_reward_timeout_steps, n_fire_steps=no_reward_fire_steps
                )

            if seed is not None:
                env.seed(seed + idx)
                env.action_space.seed(seed + idx)
                env.observation_space.seed(seed + idx)

            return env

        return _make

    VecEnvClass = {"dummy": DummyVecEnv, "subproc": SubprocVecEnv}[vec_env_class]
    venv = VecEnvClass([make(i) for i in range(n_envs)])
    if training:
        assert tb_writer
        venv = EpisodeStatsWriter(
            venv, tb_writer, training=training, rolling_length=rolling_length
        )
    if normalize:
        if normalize_load_path:
            venv = VecNormalize.load(
                os.path.join(normalize_load_path, VEC_NORMALIZE_FILENAME),
                venv,  # type: ignore
            )
        else:
            venv = VecNormalize(
                venv,  # type: ignore
                training=training,
                **(normalize_kwargs or {}),
            )
        if not training:
            venv.norm_reward = False
    return venv


def _make_procgen_env(
    config: Config,
    hparams: EnvHyperparams,
    training: bool = True,
    render: bool = False,
    normalize_load_path: Optional[str] = None,
    tb_writer: Optional[SummaryWriter] = None,
) -> GeneralVecEnv:
    (
        _,
        n_envs,
        frame_stack,
        make_kwargs,
        _,  # no_reward_timeout_steps
        _,  # no_reward_fire_steps
        _,  # vec_env_class
        normalize,
        normalize_kwargs,
        rolling_length,
        _,  # train_record_video
        _,  # video_step_interval
        _,  # initial_steps_to_truncate
    ) = hparams

    seed = config.seed(training=training)

    make_kwargs = make_kwargs or {}
    if not render:
        make_kwargs["render_mode"] = "rgb_array"
    if seed is not None:
        make_kwargs["rand_seed"] = seed

    envs = ProcgenEnv(n_envs, config.env_id, **make_kwargs)
    envs = IsVectorEnv(envs)
    envs = GetRgbObservation(envs)
    # TODO: Handle Grayscale and/or FrameStack
    envs = TransposeImageObservation(envs)

    envs = gym.wrappers.RecordEpisodeStatistics(envs)

    if seed is not None:
        envs.action_space.seed(seed)
        envs.observation_space.seed(seed)

    if training:
        assert tb_writer
        envs = EpisodeStatsWriter(
            envs, tb_writer, training=training, rolling_length=rolling_length
        )
    if normalize and training:
        normalize_kwargs = normalize_kwargs or {}
        # TODO: Handle reward stats saving/loading/syncing, but it's only important
        # for checkpointing
        envs = gym.wrappers.NormalizeReward(envs)
        clip_obs = normalize_kwargs.get("clip_reward", 10.0)
        envs = gym.wrappers.TransformReward(
            envs, lambda r: np.clip(r, -clip_obs, clip_obs)
        )

    return envs