PPO playing AntBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/0511de345b17175b7cf1ea706c3e05981f11761c
1d51343
from typing import Dict, List, Optional, Tuple, Type, TypeVar, Union | |
import numpy as np | |
from gym import Env, Space, Wrapper | |
from stable_baselines3.common.vec_env import VecEnv as SB3VecEnv | |
VecEnvObs = Union[np.ndarray, Dict[str, np.ndarray], Tuple[np.ndarray, ...]] | |
VecEnvStepReturn = Tuple[VecEnvObs, np.ndarray, np.ndarray, List[Dict]] | |
class VecotarableWrapper(Wrapper): | |
def __init__(self, env: Env) -> None: | |
super().__init__(env) | |
self.num_envs = getattr(env, "num_envs", 1) | |
self.is_vector_env = getattr(env, "is_vector_env", False) | |
self.single_observation_space = single_observation_space(env) | |
self.single_action_space = single_action_space(env) | |
def step(self, action) -> VecEnvStepReturn: | |
return self.env.step(action) | |
def reset(self) -> VecEnvObs: | |
return self.env.reset() | |
VecEnv = Union[VecotarableWrapper, SB3VecEnv] | |
def single_observation_space(env: Union[VecEnv, Env]) -> Space: | |
return getattr(env, "single_observation_space", env.observation_space) | |
def single_action_space(env: Union[VecEnv, Env]) -> Space: | |
return getattr(env, "single_action_space", env.action_space) | |
W = TypeVar("W", bound=Wrapper) | |
def find_wrapper(env: VecEnv, wrapper_class: Type[W]) -> Optional[W]: | |
current = env | |
while current and current != current.unwrapped: | |
if isinstance(current, wrapper_class): | |
return current | |
current = getattr(current, "env") | |
return None | |