sgoodfriend's picture
PPO playing AntBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
23190a6
import dataclasses
import gc
import inspect
import logging
import os
from dataclasses import asdict, dataclass
from typing import Callable, List, NamedTuple, Optional, Sequence, Union
import numpy as np
import optuna
import torch
from optuna.pruners import HyperbandPruner
from optuna.samplers import TPESampler
from optuna.visualization import plot_optimization_history, plot_param_importances
from torch.utils.tensorboard.writer import SummaryWriter
import wandb
from rl_algo_impls.a2c.optimize import sample_params as a2c_sample_params
from rl_algo_impls.runner.config import Config, EnvHyperparams, RunArgs
from rl_algo_impls.runner.running_utils import (
ALGOS,
base_parser,
get_device,
hparam_dict,
load_hyperparams,
make_policy,
set_seeds,
)
from rl_algo_impls.shared.callbacks import Callback
from rl_algo_impls.shared.callbacks.microrts_reward_decay_callback import (
MicrortsRewardDecayCallback,
)
from rl_algo_impls.shared.callbacks.optimize_callback import (
Evaluation,
OptimizeCallback,
evaluation,
)
from rl_algo_impls.shared.callbacks.self_play_callback import SelfPlayCallback
from rl_algo_impls.shared.stats import EpisodesStats
from rl_algo_impls.shared.vec_env import make_env, make_eval_env
from rl_algo_impls.wrappers.self_play_wrapper import SelfPlayWrapper
from rl_algo_impls.wrappers.vectorable_wrapper import find_wrapper
@dataclass
class StudyArgs:
load_study: bool
study_name: Optional[str] = None
storage_path: Optional[str] = None
n_trials: int = 100
n_jobs: int = 1
n_evaluations: int = 4
n_eval_envs: int = 8
n_eval_episodes: int = 16
timeout: Union[int, float, None] = None
wandb_project_name: Optional[str] = None
wandb_entity: Optional[str] = None
wandb_tags: Sequence[str] = dataclasses.field(default_factory=list)
wandb_group: Optional[str] = None
virtual_display: bool = False
class Args(NamedTuple):
train_args: Sequence[RunArgs]
study_args: StudyArgs
def parse_args() -> Args:
parser = base_parser()
parser.add_argument(
"--load-study",
action="store_true",
help="Load a preexisting study, useful for parallelization",
)
parser.add_argument("--study-name", type=str, help="Optuna study name")
parser.add_argument(
"--storage-path",
type=str,
help="Path of database for Optuna to persist to",
)
parser.add_argument(
"--wandb-project-name",
type=str,
default="rl-algo-impls-tuning",
help="WandB project name to upload tuning data to. If none, won't upload",
)
parser.add_argument(
"--wandb-entity",
type=str,
help="WandB team. None uses the default entity",
)
parser.add_argument(
"--wandb-tags", type=str, nargs="*", help="WandB tags to add to run"
)
parser.add_argument(
"--wandb-group", type=str, help="WandB group to group trials under"
)
parser.add_argument(
"--n-trials", type=int, default=100, help="Maximum number of trials"
)
parser.add_argument(
"--n-jobs", type=int, default=1, help="Number of jobs to run in parallel"
)
parser.add_argument(
"--n-evaluations",
type=int,
default=4,
help="Number of evaluations during the training",
)
parser.add_argument(
"--n-eval-envs",
type=int,
default=8,
help="Number of envs in vectorized eval environment",
)
parser.add_argument(
"--n-eval-episodes",
type=int,
default=16,
help="Number of episodes to complete for evaluation",
)
parser.add_argument("--timeout", type=int, help="Seconds to timeout optimization")
parser.add_argument(
"--virtual-display", action="store_true", help="Use headless virtual display"
)
# parser.set_defaults(
# algo=["a2c"],
# env=["CartPole-v1"],
# seed=[100, 200, 300],
# n_trials=5,
# virtual_display=True,
# )
train_dict, study_dict = {}, {}
for k, v in vars(parser.parse_args()).items():
if k in inspect.signature(StudyArgs).parameters:
study_dict[k] = v
else:
train_dict[k] = v
study_args = StudyArgs(**study_dict)
# Hyperparameter tuning across algos and envs not supported
assert len(train_dict["algo"]) == 1
assert len(train_dict["env"]) == 1
train_args = RunArgs.expand_from_dict(train_dict)
if not all((study_args.study_name, study_args.storage_path)):
hyperparams = load_hyperparams(train_args[0].algo, train_args[0].env)
config = Config(train_args[0], hyperparams, os.getcwd())
if study_args.study_name is None:
study_args.study_name = config.run_name(include_seed=False)
if study_args.storage_path is None:
study_args.storage_path = (
f"sqlite:///{os.path.join(config.runs_dir, 'tuning.db')}"
)
# Default set group name to study name
study_args.wandb_group = study_args.wandb_group or study_args.study_name
return Args(train_args, study_args)
def objective_fn(
args: Sequence[RunArgs], study_args: StudyArgs
) -> Callable[[optuna.Trial], float]:
def objective(trial: optuna.Trial) -> float:
if len(args) == 1:
return simple_optimize(trial, args[0], study_args)
else:
return stepwise_optimize(trial, args, study_args)
return objective
def simple_optimize(trial: optuna.Trial, args: RunArgs, study_args: StudyArgs) -> float:
base_hyperparams = load_hyperparams(args.algo, args.env)
base_config = Config(args, base_hyperparams, os.getcwd())
if args.algo == "a2c":
hyperparams = a2c_sample_params(trial, base_hyperparams, base_config)
else:
raise ValueError(f"Optimizing {args.algo} isn't supported")
config = Config(args, hyperparams, os.getcwd())
wandb_enabled = bool(study_args.wandb_project_name)
if wandb_enabled:
wandb.init(
project=study_args.wandb_project_name,
entity=study_args.wandb_entity,
config=asdict(hyperparams),
name=f"{config.model_name()}-{str(trial.number)}",
tags=study_args.wandb_tags,
group=study_args.wandb_group,
sync_tensorboard=True,
monitor_gym=True,
save_code=True,
reinit=True,
)
wandb.config.update(args)
tb_writer = SummaryWriter(config.tensorboard_summary_path)
set_seeds(args.seed, args.use_deterministic_algorithms)
env = make_env(
config, EnvHyperparams(**config.env_hyperparams), tb_writer=tb_writer
)
device = get_device(config, env)
policy_factory = lambda: make_policy(
args.algo, env, device, **config.policy_hyperparams
)
policy = policy_factory()
algo = ALGOS[args.algo](policy, env, device, tb_writer, **config.algo_hyperparams)
eval_env = make_eval_env(
config,
EnvHyperparams(**config.env_hyperparams),
override_hparams={"n_envs": study_args.n_eval_envs},
)
optimize_callback = OptimizeCallback(
policy,
eval_env,
trial,
tb_writer,
step_freq=config.n_timesteps // study_args.n_evaluations,
n_episodes=study_args.n_eval_episodes,
deterministic=config.eval_hyperparams.get("deterministic", True),
)
callbacks: List[Callback] = [optimize_callback]
if config.hyperparams.microrts_reward_decay_callback:
callbacks.append(MicrortsRewardDecayCallback(config, env))
selfPlayWrapper = find_wrapper(env, SelfPlayWrapper)
if selfPlayWrapper:
callbacks.append(SelfPlayCallback(policy, policy_factory, selfPlayWrapper))
try:
algo.learn(config.n_timesteps, callbacks=callbacks)
if not optimize_callback.is_pruned:
optimize_callback.evaluate()
if not optimize_callback.is_pruned:
policy.save(config.model_dir_path(best=False))
eval_stat: EpisodesStats = callback.last_eval_stat # type: ignore
train_stat: EpisodesStats = callback.last_train_stat # type: ignore
tb_writer.add_hparams(
hparam_dict(hyperparams, vars(args)),
{
"hparam/last_mean": eval_stat.score.mean,
"hparam/last_result": eval_stat.score.mean - eval_stat.score.std,
"hparam/train_mean": train_stat.score.mean,
"hparam/train_result": train_stat.score.mean - train_stat.score.std,
"hparam/score": optimize_callback.last_score,
"hparam/is_pruned": optimize_callback.is_pruned,
},
None,
config.run_name(),
)
tb_writer.close()
if wandb_enabled:
wandb.run.summary["state"] = ( # type: ignore
"Pruned" if optimize_callback.is_pruned else "Complete"
)
wandb.finish(quiet=True)
if optimize_callback.is_pruned:
raise optuna.exceptions.TrialPruned()
return optimize_callback.last_score
except AssertionError as e:
logging.warning(e)
return np.nan
finally:
env.close()
eval_env.close()
gc.collect()
torch.cuda.empty_cache()
def stepwise_optimize(
trial: optuna.Trial, args: Sequence[RunArgs], study_args: StudyArgs
) -> float:
algo = args[0].algo
env_id = args[0].env
base_hyperparams = load_hyperparams(algo, env_id)
base_config = Config(args[0], base_hyperparams, os.getcwd())
if algo == "a2c":
hyperparams = a2c_sample_params(trial, base_hyperparams, base_config)
else:
raise ValueError(f"Optimizing {algo} isn't supported")
wandb_enabled = bool(study_args.wandb_project_name)
if wandb_enabled:
wandb.init(
project=study_args.wandb_project_name,
entity=study_args.wandb_entity,
config=asdict(hyperparams),
name=f"{str(trial.number)}-S{base_config.seed()}",
tags=study_args.wandb_tags,
group=study_args.wandb_group,
save_code=True,
reinit=True,
)
score = -np.inf
for i in range(study_args.n_evaluations):
evaluations: List[Evaluation] = []
for arg in args:
config = Config(arg, hyperparams, os.getcwd())
tb_writer = SummaryWriter(config.tensorboard_summary_path)
set_seeds(arg.seed, arg.use_deterministic_algorithms)
env = make_env(
config,
EnvHyperparams(**config.env_hyperparams),
normalize_load_path=config.model_dir_path() if i > 0 else None,
tb_writer=tb_writer,
)
device = get_device(config, env)
policy_factory = lambda: make_policy(
arg.algo, env, device, **config.policy_hyperparams
)
policy = policy_factory()
if i > 0:
policy.load(config.model_dir_path())
algo = ALGOS[arg.algo](
policy, env, device, tb_writer, **config.algo_hyperparams
)
eval_env = make_eval_env(
config,
EnvHyperparams(**config.env_hyperparams),
normalize_load_path=config.model_dir_path() if i > 0 else None,
override_hparams={"n_envs": study_args.n_eval_envs},
)
start_timesteps = int(i * config.n_timesteps / study_args.n_evaluations)
train_timesteps = (
int((i + 1) * config.n_timesteps / study_args.n_evaluations)
- start_timesteps
)
callbacks = []
if config.hyperparams.microrts_reward_decay_callback:
callbacks.append(
MicrortsRewardDecayCallback(
config, env, start_timesteps=start_timesteps
)
)
selfPlayWrapper = find_wrapper(env, SelfPlayWrapper)
if selfPlayWrapper:
callbacks.append(
SelfPlayCallback(policy, policy_factory, selfPlayWrapper)
)
try:
algo.learn(
train_timesteps,
callbacks=callbacks,
total_timesteps=config.n_timesteps,
start_timesteps=start_timesteps,
)
evaluations.append(
evaluation(
policy,
eval_env,
tb_writer,
study_args.n_eval_episodes,
config.eval_hyperparams.get("deterministic", True),
start_timesteps + train_timesteps,
)
)
policy.save(config.model_dir_path())
tb_writer.close()
except AssertionError as e:
logging.warning(e)
if wandb_enabled:
wandb_finish("Error")
return np.nan
finally:
env.close()
eval_env.close()
gc.collect()
torch.cuda.empty_cache()
d = {}
for idx, e in enumerate(evaluations):
d[f"{idx}/eval_mean"] = e.eval_stat.score.mean
d[f"{idx}/train_mean"] = e.train_stat.score.mean
d[f"{idx}/score"] = e.score
d["eval"] = np.mean([e.eval_stat.score.mean for e in evaluations]).item()
d["train"] = np.mean([e.train_stat.score.mean for e in evaluations]).item()
score = np.mean([e.score for e in evaluations]).item()
d["score"] = score
step = i + 1
wandb.log(d, step=step)
print(f"Trial #{trial.number} Step {step} Score: {round(score, 2)}")
trial.report(score, step)
if trial.should_prune():
if wandb_enabled:
wandb_finish("Pruned")
raise optuna.exceptions.TrialPruned()
if wandb_enabled:
wandb_finish("Complete")
return score
def wandb_finish(state: str) -> None:
wandb.run.summary["state"] = state # type: ignore
wandb.finish(quiet=True)
def optimize() -> None:
from pyvirtualdisplay.display import Display
train_args, study_args = parse_args()
if study_args.virtual_display:
virtual_display = Display(visible=False, size=(1400, 900))
virtual_display.start()
sampler = TPESampler(**TPESampler.hyperopt_parameters())
pruner = HyperbandPruner()
if study_args.load_study:
assert study_args.study_name
assert study_args.storage_path
study = optuna.load_study(
study_name=study_args.study_name,
storage=study_args.storage_path,
sampler=sampler,
pruner=pruner,
)
else:
study = optuna.create_study(
study_name=study_args.study_name,
storage=study_args.storage_path,
sampler=sampler,
pruner=pruner,
direction="maximize",
)
try:
study.optimize(
objective_fn(train_args, study_args),
n_trials=study_args.n_trials,
n_jobs=study_args.n_jobs,
timeout=study_args.timeout,
)
except KeyboardInterrupt:
pass
best = study.best_trial
print(f"Best Trial Value: {best.value}")
print("Attributes:")
for key, value in list(best.params.items()) + list(best.user_attrs.items()):
print(f" {key}: {value}")
df = study.trials_dataframe()
df = df[df.state == "COMPLETE"].sort_values(by=["value"], ascending=False)
print(df.to_markdown(index=False))
fig1 = plot_optimization_history(study)
fig1.write_image("opt_history.png")
fig2 = plot_param_importances(study)
fig2.write_image("param_importances.png")
if __name__ == "__main__":
optimize()