sgoodfriend's picture
PPO playing AntBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
23190a6
CartPole-v1: &cartpole-defaults
n_timesteps: !!float 5e5
env_hyperparams:
n_envs: 8
CartPole-v0:
<<: *cartpole-defaults
MountainCar-v0:
n_timesteps: !!float 1e6
env_hyperparams:
n_envs: 16
normalize: true
MountainCarContinuous-v0:
n_timesteps: !!float 1e5
env_hyperparams:
n_envs: 4
normalize: true
# policy_hyperparams:
# use_sde: true
# log_std_init: 0.0
# init_layers_orthogonal: false
algo_hyperparams:
n_steps: 100
sde_sample_freq: 16
Acrobot-v1:
n_timesteps: !!float 5e5
env_hyperparams:
normalize: true
n_envs: 16
# Tuned
LunarLander-v2:
device: cpu
n_timesteps: !!float 1e6
env_hyperparams:
n_envs: 4
normalize: true
algo_hyperparams:
n_steps: 2
gamma: 0.9955517404308908
gae_lambda: 0.9875340918797773
learning_rate: 0.0013814130817068916
learning_rate_decay: linear
ent_coef: !!float 3.388369146384422e-7
ent_coef_decay: none
max_grad_norm: 3.33982095073364
normalize_advantage: true
vf_coef: 0.1667838310548184
BipedalWalker-v3:
n_timesteps: !!float 5e6
env_hyperparams:
n_envs: 16
normalize: true
policy_hyperparams:
use_sde: true
log_std_init: -2
init_layers_orthogonal: false
algo_hyperparams:
ent_coef: 0
max_grad_norm: 0.5
n_steps: 8
gae_lambda: 0.9
vf_coef: 0.4
gamma: 0.99
learning_rate: !!float 9.6e-4
learning_rate_decay: linear
HalfCheetahBulletEnv-v0: &pybullet-defaults
n_timesteps: !!float 2e6
env_hyperparams:
n_envs: 4
normalize: true
policy_hyperparams:
use_sde: true
log_std_init: -2
init_layers_orthogonal: false
algo_hyperparams: &pybullet-algo-defaults
n_steps: 8
ent_coef: 0
max_grad_norm: 0.5
gae_lambda: 0.9
gamma: 0.99
vf_coef: 0.4
learning_rate: !!float 9.6e-4
learning_rate_decay: linear
AntBulletEnv-v0:
<<: *pybullet-defaults
Walker2DBulletEnv-v0:
<<: *pybullet-defaults
HopperBulletEnv-v0:
<<: *pybullet-defaults
# Tuned
CarRacing-v0:
n_timesteps: !!float 4e6
env_hyperparams:
n_envs: 4
frame_stack: 4
normalize: true
normalize_kwargs:
norm_obs: false
norm_reward: true
policy_hyperparams:
use_sde: true
log_std_init: -4.839609092563
init_layers_orthogonal: true
activation_fn: tanh
share_features_extractor: false
cnn_flatten_dim: 256
hidden_sizes: [256]
algo_hyperparams:
n_steps: 64
learning_rate: 0.000018971962220405576
gamma: 0.9942776405534832
gae_lambda: 0.9549244758833236
ent_coef: 0.0000015666550584860516
ent_coef_decay: linear
vf_coef: 0.12164696385898476
max_grad_norm: 2.2574480552177127
normalize_advantage: false
use_rms_prop: false
sde_sample_freq: 16
_atari: &atari-defaults
n_timesteps: !!float 1e7
env_hyperparams: &atari-env-defaults
n_envs: 16
frame_stack: 4
no_reward_timeout_steps: 1000
no_reward_fire_steps: 500
vec_env_class: async
policy_hyperparams: &atari-policy-defaults
activation_fn: relu
algo_hyperparams:
ent_coef: 0.01
vf_coef: 0.25