DQN playing Acrobot-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
48f24b9
import dataclasses | |
from collections import defaultdict | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Sequence, TypeVar, Union | |
import numpy as np | |
from torch.utils.tensorboard.writer import SummaryWriter | |
class Episode: | |
score: float = 0 | |
length: int = 0 | |
info: Dict[str, Dict[str, Any]] = dataclasses.field(default_factory=dict) | |
StatisticSelf = TypeVar("StatisticSelf", bound="Statistic") | |
class Statistic: | |
values: np.ndarray | |
round_digits: int = 2 | |
score_function: str = "mean-std" | |
def mean(self) -> float: | |
return np.mean(self.values).item() | |
def std(self) -> float: | |
return np.std(self.values).item() | |
def min(self) -> float: | |
return np.min(self.values).item() | |
def max(self) -> float: | |
return np.max(self.values).item() | |
def sum(self) -> float: | |
return np.sum(self.values).item() | |
def __len__(self) -> int: | |
return len(self.values) | |
def score(self) -> float: | |
if self.score_function == "mean-std": | |
return self.mean - self.std | |
elif self.score_function == "mean": | |
return self.mean | |
else: | |
raise NotImplemented( | |
f"Only mean-std and mean score_functions supported ({self.score_function})" | |
) | |
def _diff(self: StatisticSelf, o: StatisticSelf) -> float: | |
return self.score() - o.score() | |
def __gt__(self: StatisticSelf, o: StatisticSelf) -> bool: | |
return self._diff(o) > 0 | |
def __ge__(self: StatisticSelf, o: StatisticSelf) -> bool: | |
return self._diff(o) >= 0 | |
def __repr__(self) -> str: | |
mean = round(self.mean, self.round_digits) | |
if self.round_digits == 0: | |
mean = int(mean) | |
if self.score_function == "mean": | |
return f"{mean}" | |
std = round(self.std, self.round_digits) | |
if self.round_digits == 0: | |
std = int(std) | |
return f"{mean} +/- {std}" | |
def to_dict(self) -> Dict[str, float]: | |
return { | |
"mean": self.mean, | |
"std": self.std, | |
"min": self.min, | |
"max": self.max, | |
} | |
EpisodesStatsSelf = TypeVar("EpisodesStatsSelf", bound="EpisodesStats") | |
class EpisodesStats: | |
def __init__( | |
self, | |
episodes: Sequence[Episode], | |
simple: bool = False, | |
score_function: str = "mean-std", | |
) -> None: | |
self.episodes = episodes | |
self.simple = simple | |
self.score = Statistic( | |
np.array([e.score for e in episodes]), score_function=score_function | |
) | |
self.length = Statistic(np.array([e.length for e in episodes]), round_digits=0) | |
additional_values = defaultdict(list) | |
for e in self.episodes: | |
if e.info: | |
for k, v in e.info.items(): | |
if isinstance(v, dict): | |
for k2, v2 in v.items(): | |
additional_values[f"{k}_{k2}"].append(v2) | |
else: | |
additional_values[k].append(v) | |
self.additional_stats = { | |
k: Statistic(np.array(values)) for k, values in additional_values.items() | |
} | |
self.score_function = score_function | |
def __gt__(self: EpisodesStatsSelf, o: EpisodesStatsSelf) -> bool: | |
return self.score > o.score | |
def __ge__(self: EpisodesStatsSelf, o: EpisodesStatsSelf) -> bool: | |
return self.score >= o.score | |
def __repr__(self) -> str: | |
mean = self.score.mean | |
score = self.score.score() | |
if mean != score: | |
return f"Score: {self.score} ({round(score)}) | Length: {self.length}" | |
else: | |
return f"Score: {self.score} | Length: {self.length}" | |
def __len__(self) -> int: | |
return len(self.episodes) | |
def _asdict(self) -> dict: | |
return { | |
"n_episodes": len(self.episodes), | |
"score": self.score.to_dict(), | |
"length": self.length.to_dict(), | |
} | |
def write_to_tensorboard( | |
self, tb_writer: SummaryWriter, main_tag: str, global_step: Optional[int] = None | |
) -> None: | |
stats = {"mean": self.score.mean} | |
if not self.simple: | |
stats.update( | |
{ | |
"min": self.score.min, | |
"max": self.score.max, | |
"result": self.score.score(), | |
"n_episodes": len(self.episodes), | |
"length": self.length.mean, | |
} | |
) | |
for k, addl_stats in self.additional_stats.items(): | |
stats[k] = addl_stats.mean | |
for name, value in stats.items(): | |
tb_writer.add_scalar(f"{main_tag}/{name}", value, global_step=global_step) | |
class EpisodeAccumulator: | |
def __init__(self, num_envs: int): | |
self._episodes = [] | |
self.current_episodes = [Episode() for _ in range(num_envs)] | |
def episodes(self) -> List[Episode]: | |
return self._episodes | |
def step(self, reward: np.ndarray, done: np.ndarray, info: List[Dict]) -> None: | |
for idx, current in enumerate(self.current_episodes): | |
current.score += reward[idx] | |
current.length += 1 | |
if done[idx]: | |
self._episodes.append(current) | |
self.current_episodes[idx] = Episode() | |
self.on_done(idx, current, info[idx]) | |
def __len__(self) -> int: | |
return len(self.episodes) | |
def on_done(self, ep_idx: int, episode: Episode, info: Dict) -> None: | |
pass | |
def stats(self) -> EpisodesStats: | |
return EpisodesStats(self.episodes) | |
def log_scalars( | |
tb_writer: SummaryWriter, | |
main_tag: str, | |
tag_scalar_dict: Dict[str, Union[int, float]], | |
global_step: int, | |
) -> None: | |
for tag, value in tag_scalar_dict.items(): | |
tb_writer.add_scalar(f"{main_tag}/{tag}", value, global_step) | |