DQN playing Acrobot-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
48f24b9
from typing import Optional, Tuple, Type, Union | |
import gym | |
import torch | |
import torch.nn as nn | |
from rl_algo_impls.shared.encoder.cnn import CnnEncoder, EncoderOutDim | |
from rl_algo_impls.shared.module.utils import layer_init | |
class GridnetEncoder(CnnEncoder): | |
""" | |
Encoder for encoder-decoder for Gym-MicroRTS | |
""" | |
def __init__( | |
self, | |
obs_space: gym.Space, | |
activation: Type[nn.Module] = nn.ReLU, | |
cnn_init_layers_orthogonal: Optional[bool] = None, | |
**kwargs | |
) -> None: | |
if cnn_init_layers_orthogonal is None: | |
cnn_init_layers_orthogonal = True | |
super().__init__(obs_space, **kwargs) | |
in_channels = obs_space.shape[0] # type: ignore | |
self.encoder = nn.Sequential( | |
layer_init( | |
nn.Conv2d(in_channels, 32, kernel_size=3, padding=1), | |
cnn_init_layers_orthogonal, | |
), | |
nn.MaxPool2d(3, stride=2, padding=1), | |
activation(), | |
layer_init( | |
nn.Conv2d(32, 64, kernel_size=3, padding=1), | |
cnn_init_layers_orthogonal, | |
), | |
nn.MaxPool2d(3, stride=2, padding=1), | |
activation(), | |
layer_init( | |
nn.Conv2d(64, 128, kernel_size=3, padding=1), | |
cnn_init_layers_orthogonal, | |
), | |
nn.MaxPool2d(3, stride=2, padding=1), | |
activation(), | |
layer_init( | |
nn.Conv2d(128, 256, kernel_size=3, padding=1), | |
cnn_init_layers_orthogonal, | |
), | |
nn.MaxPool2d(3, stride=2, padding=1), | |
activation(), | |
) | |
with torch.no_grad(): | |
encoder_out = self.encoder( | |
self.preprocess(torch.as_tensor(obs_space.sample())) # type: ignore | |
) | |
self._out_dim = encoder_out.shape[1:] | |
def forward(self, obs: torch.Tensor) -> torch.Tensor: | |
return self.encoder(super().forward(obs)) | |
def out_dim(self) -> EncoderOutDim: | |
return self._out_dim | |