File size: 2,301 Bytes
12ee278
 
 
2636b64
12ee278
 
2636b64
12ee278
 
 
2636b64
12ee278
 
 
 
 
2636b64
 
12ee278
 
 
 
 
 
 
 
 
 
 
 
2636b64
12ee278
2636b64
12ee278
 
 
 
 
 
805455c
 
 
 
 
12ee278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- facebook/multilingual_librispeech
metrics:
- wer
model-index:
- name: Whisper largeV2 French MLS
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: facebook/multilingual_librispeech french
      type: facebook/multilingual_librispeech
      config: french
      split: test
      args: french
    metrics:
    - name: Wer
      type: wer
      value: 4.561620226935377
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper largeV2 French MLS

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the facebook/multilingual_librispeech french dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0903
- Wer: 4.5616

## Model description

The model is fine-tuned for 4000 updates/steps on multilingual librispeech French train data.

- Zero-shot                        - 7.3 (MLS French test)
- Fine-tune MLS French train      - 4.56 (MLS French test) (-37.5%)


## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1303        | 0.25  | 1000 | 0.1219          | 6.3618 |
| 0.0751        | 0.5   | 2000 | 0.1033          | 5.3905 |
| 0.0613        | 0.75  | 3000 | 0.0970          | 4.9193 |
| 0.0796        | 1.0   | 4000 | 0.0903          | 4.5616 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2