File size: 3,769 Bytes
1e58ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-full-ultrabin-reward-scale-1-rpo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-full-ultrabin-reward-scale-1-rpo

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0345
- Rewards/chosen: -0.1240
- Rewards/rejected: -0.4158
- Rewards/accuracies: 0.7734
- Rewards/margins: 0.2918
- Logps/rejected: -304.2409
- Logps/chosen: -275.0308
- Logits/rejected: -2.4195
- Logits/chosen: -2.5003

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 55
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0497        | 0.1046 | 50   | 0.0471          | 0.0341         | -0.0639          | 0.6953             | 0.0980          | -269.0505      | -259.2180    | -2.5747         | -2.6118       |
| 0.0399        | 0.2092 | 100  | 0.0400          | -0.0674        | -0.3039          | 0.7656             | 0.2365          | -293.0492      | -269.3653    | -2.2263         | -2.2796       |
| 0.0384        | 0.3138 | 150  | 0.0368          | -0.1521        | -0.4051          | 0.7812             | 0.2530          | -303.1761      | -277.8396    | -2.4575         | -2.5017       |
| 0.0354        | 0.4184 | 200  | 0.0368          | -0.1608        | -0.4413          | 0.7812             | 0.2805          | -306.7949      | -278.7134    | -2.6355         | -2.6785       |
| 0.035         | 0.5230 | 250  | 0.0359          | -0.0276        | -0.3002          | 0.7812             | 0.2726          | -292.6817      | -265.3905    | -2.5364         | -2.5931       |
| 0.0336        | 0.6276 | 300  | 0.0351          | -0.1609        | -0.4489          | 0.7734             | 0.2880          | -307.5566      | -278.7195    | -2.3179         | -2.4060       |
| 0.0338        | 0.7322 | 350  | 0.0348          | -0.1145        | -0.3940          | 0.7695             | 0.2795          | -302.0604      | -274.0787    | -2.3603         | -2.4329       |
| 0.0352        | 0.8368 | 400  | 0.0345          | -0.1250        | -0.4112          | 0.7734             | 0.2863          | -303.7862      | -275.1277    | -2.4372         | -2.5111       |
| 0.0342        | 0.9414 | 450  | 0.0345          | -0.1240        | -0.4158          | 0.7734             | 0.2918          | -304.2409      | -275.0308    | -2.4195         | -2.5003       |


### Framework versions

- Transformers 4.44.0.dev0
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1