File size: 3,570 Bytes
308c2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b3d0c
 
 
 
 
 
 
 
 
308c2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3b3d0c
 
 
 
 
 
 
 
308c2cb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-full-prometheus-reward-scale-05
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-full-prometheus-reward-scale-05

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5286
- Rewards/chosen: -1.4143
- Rewards/rejected: -2.7417
- Rewards/accuracies: 0.7629
- Rewards/margins: 1.3275
- Logps/rejected: -493.2510
- Logps/chosen: -417.0316
- Logits/rejected: 1.9856
- Logits/chosen: 0.4911

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 55
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6696        | 0.1143 | 50   | 0.6584          | -0.0084        | -0.1643          | 0.6853             | 0.1559          | -235.5072      | -276.4426    | -2.4382         | -2.5406       |
| 0.6122        | 0.2286 | 100  | 0.6111          | -0.4070        | -0.8953          | 0.6767             | 0.4883          | -308.6058      | -316.3019    | -2.5533         | -2.6512       |
| 0.5476        | 0.3429 | 150  | 0.5583          | -1.3343        | -2.3426          | 0.7371             | 1.0083          | -453.3369      | -409.0355    | 0.9770          | 0.1441        |
| 0.5582        | 0.4571 | 200  | 0.5499          | -1.0345        | -2.1424          | 0.7328             | 1.1079          | -433.3173      | -379.0511    | 0.5624          | -0.4976       |
| 0.5503        | 0.5714 | 250  | 0.5393          | -1.1701        | -2.3108          | 0.7371             | 1.1406          | -450.1522      | -392.6152    | 0.7719          | -0.3725       |
| 0.5224        | 0.6857 | 300  | 0.5312          | -1.2228        | -2.5102          | 0.7543             | 1.2874          | -470.0949      | -397.8840    | 1.7088          | 0.1892        |
| 0.5396        | 0.8    | 350  | 0.5290          | -1.4462        | -2.7485          | 0.75               | 1.3024          | -493.9275      | -420.2202    | 1.9215          | 0.4365        |
| 0.55          | 0.9143 | 400  | 0.5286          | -1.4143        | -2.7417          | 0.7629             | 1.3275          | -493.2510      | -417.0316    | 1.9856          | 0.4911        |


### Framework versions

- Transformers 4.44.0.dev0
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1