sfulay's picture
Model save
180937f verified
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-gpt_consistent-reward-scale-1
    results: []

zephyr-7b-dpo-full-gpt_consistent-reward-scale-1

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4815
  • Rewards/chosen: -1.5849
  • Rewards/rejected: -2.8045
  • Rewards/accuracies: 0.7328
  • Rewards/margins: 1.2196
  • Logps/rejected: -526.9686
  • Logps/chosen: -443.5758
  • Logits/rejected: 3.4838
  • Logits/chosen: 2.3333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6607 0.1147 50 0.6447 -0.0044 -0.1452 0.6897 0.1408 -261.0398 -285.5275 -2.4923 -2.5735
0.5616 0.2294 100 0.5464 -0.8527 -1.5772 0.6853 0.7245 -404.2408 -370.3625 0.2075 -0.2410
0.5333 0.3440 150 0.5195 -1.0024 -1.8820 0.7112 0.8797 -434.7274 -385.3255 1.4808 0.5890
0.5219 0.4587 200 0.5010 -1.0719 -2.0541 0.7328 0.9822 -451.9354 -392.2838 2.4260 1.4256
0.5007 0.5734 250 0.4917 -1.2321 -2.3291 0.7241 1.0970 -479.4298 -408.2994 2.6738 1.4527
0.5109 0.6881 300 0.4878 -1.3356 -2.5048 0.7284 1.1691 -496.9991 -418.6534 2.8884 1.5762
0.5063 0.8028 350 0.4814 -1.4870 -2.6833 0.7371 1.1963 -514.8549 -433.7904 3.3469 2.1699
0.4936 0.9174 400 0.4815 -1.5849 -2.8045 0.7328 1.2196 -526.9686 -443.5758 3.4838 2.3333

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1